HyNet North West

OUTLINE CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN (OCEMP)

Appendix 1 Outline Soil Management Plan (Tracked Change)

HyNet Carbon Dioxide Pipeline DCO

Planning Act 2008

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 – Regulations 5(2)(a)

Document Reference Number D.6.5.4.1

Applicant: Liverpool Bay CCS Limited

Inspectorate Reference: EN070007

English Version

REVISION: <u>CB</u> DATE: September 2023 DOCUMENT OWNER: WSP UK Limited PUBLIC

QUALITY CONTROL

		D.6.5.4.1			
		WSP			
Revision Date		Comments	Author	Checker	Approver
Α	September 2022	Submitted with 2022 ES	EO'N	КН	DW
В	July 2023	Submitted at Deadline 4	EO'N	KH	DW
<u>C</u>	September 2023	Final for DCO Examination - submitted at Deadline 7	<u>EO'N</u>	<u>KH</u>	DW

TABLE OF CONTENTS

1.	INTR	ODUCTION	4
	1.1.	Project Background	4
	1.2.	Soil Sensitivity	4
	1.3.	Report Purpose and limitations	5
2.	METH	IODOLOGY	7
	2.1.	Sources of Information	7
	2.2.	Limitations	7
3.	RESL	JLTS	9
	3.1.	Overview	9
	3.2.	Soil Textures	9
	3.3.	Soil Excavation Volume Estimations	10
	3.4.	Approximate Excavation Volume Estimates	12
4.	SOIL		18
	4.1.	Main Principles	18
	4.2.	Soil Moisture Conditions for Handling	19
	4.3.	PrepaRAtory Works	20
	4.4.	Stripping	20
	4.5.	Soil Storage	22
	4.6.	Stockpile Locations	23
	4.7.	Forming the Stockpiles	23
	4.8.	Maintenance of Stockpiles During Storage	24
5.	SOIL	REINSTATEMENT	25
	5.1.	General methods to be Used Within Restoration	25
	5.2.	Excavation of Soil Stockpiles	25
	5.3.	Preparation of the Base Layer	25
	5.4.	Soil Reinstatement	25
6.	AFTE	RCARE OF REINSTATED SOILS	27
7.	SOIL	REUSE AND DISPOSAL	28
8.	SUM	MARY AND CONCLUSIONS	29
3.	REFE	RENCES	30

TABLES

Table 3.1 - Soil Resilience Characteristics*	9
Table 3.3 – Estimated Topsoil Stripping for Working Width	
Table 3.4 - Estimated Soil Excavation for Trenchless Crossings Pits	15
Table 3.5 - Estimated Soil Excavation for Centralised Compounds	16
Table 3.6 - Anticipated Soil Excavation for AGIs and BVSs	17

ANNEX

ANNEX A AGROCLIMATIC DATA ANNEX B SOIL RESILIENCE

1. INTRODUCTION

1.1. PROJECT BACKGROUND

- 1.1.1. This Outline Soil Management Plan (SMP) supports the assessment contained in Chapter 11 – Land and Soil (Volume II) and is an appendix to the Outline Construction Environmental Management Plan (Document reference: D.6.5.4).
- 1.1.2. The Applicant intends to build and operate a new underground carbon dioxide (CO₂) pipeline from Cheshire, England to Flintshire, Wales with necessary Above Ground Installations (AGIs) and Block Valve Stations (BVSs), hereafter referred to as the 'DCO Proposed Development'. Further details of each element of the DCO Proposed Development are set out in Chapter 3 Description of the DCO Proposed Development (Volume II).
- 1.1.3. The DCO Proposed Development will form part of HyNet North West ('the Project'), which is a hydrogen supply and Carbon Capture and Storage ('CCS') project. The goal of the Project is to reduce CO₂ emissions from industry, homes and transport and support economic growth in the North West of England and North Wales. The wider Project is based on the production of low carbon hydrogen from natural gas. It includes the development of a new hydrogen production plant, hydrogen distribution pipelines, hydrogen storage and the creation of CCS infrastructure. CCS prevents CO₂ entering the atmosphere by capturing it, compressing it and transporting it for safe, permanent storage.
- 1.1.4. Further details of each element of the DCO Proposed Development are set out in **Chapter 3 Description of the DCO Proposed Development (Volume II).**

1.2. SOIL SENSITIVITY

- 1.2.1. Reading Agricultural Consultants (RAC) conducted a detailed Agricultural Land Classification (ALC) survey, between March and May 2022 (**Ref. 9**). This supplemented existing ALC survey data produced by ADAS (**Ref. 1**). _ALC surveys determine the quality of agricultural land on a 5-point scale, with Grade 1 being excellent quality and grade 5 being very poor-quality (**Ref. 6**). The grading is based on climatic, site and soil properties.
- 1.2.2. The National Planning and Policy Framework (NPFF) (**Ref. 7**) and Planning Policy Wales Edition 11 (PPW) (**Ref. 8**) defines land classified as Grades 1, 2 and 3a as the Best and Most Versatile (BMV) agricultural land. PPW states that BMV land "should be conserved as a finite resource for the future".

- 1.2.3. Non-BMV soil should also be treated as a finite resource as "any loss or degradation of this resource reduces the national stock and the capacity to support ecosystem services in all cases" (Ref. 4).
- 1.2.4. IEMA (2022) **(Ref. 4)** guidance states that "*in the first instance, developers* should be seeking to avoid negative effects on land and soil... Adapting the generic mitigation hierarchy to soils: avoid > minimise > restore on site > reuse off-site".
- 1.2.5. Without implementing suitable soil handling practices, soils are prone to degradation which leads to numerous environmental impacts both on and off-site, such as:
 - Soil erosion (loss of a resource);
 - Carbon release (disturbance of organic rich soils);
 - Loss of soil organic matter leading to a decline in soil and poor soil structure;
 - Soil compaction leading to loss of soil structure and waterlogging, restricting aeration and rooting potential;
 - Sedimentation of water features, reducing biological productivity and habitat quality;
 - Loss of soil biological activity; and
 - Visual impact of slope failure or soil erosion.

1.3. REPORT PURPOSE AND LIMITATIONS

- 1.3.1. This Outline SMP has been produced to ensure that effects on soil resources are minimised, <u>that-and-adequate</u> provisions for all land being returned to <u>productive</u> agricultural use are made, <u>and to minimise loss of BMV land as a</u> <u>result of capability from the DCO Proposed Ddevelopment</u>. The Outline SMP provides- guidance on appropriate soil management practices (for the categories explained below) and requirements for the development of the Detailed SMP (that will be completed by the appointed Construction Contractor(s)). This Outline SMP:
 - Describes soil handling methods (stripping, stockpiling and reinstatement)
 - Describes required monitoring procedures for soil management during, and after, construction;
 - Describes roles and responsibilities suitable for monitoring soil during the construction phase; and
 - Describes suitable methods for restoration of land to its former use.

1.3.2.The following bodies will be consultees on the Detailed SMP and associatedSoil Resource Plan:

• <u>Welsh Government – Soil, Peatland and Agricultural Land Use Planning Unit</u> (LQAS@gov.wales)

2. METHODOLOGY

2.1. SOURCES OF INFORMATION

2.1.1. Reading Agricultural Consultants (RAC) conducted detailed ALC surveys, between March and May 2022, that covered the Newbuild Infrastructure Boundary (Ref. 9 & 10). The associated ALC survey reports can be found within Appendix 11.4 – Agricultural Land Classification and Soil Resources (Newbuild Carbon Dioxide Pipeline) Report [REP4-132APP-133] and Appendix 11.5 - Agricultural Land Classification and Soil Resources (Block Valve Stations) Report [REP4-133APP-134].

2.1.2. This Outline SMP is informed by:

- Reading Agricultural Consultants (RAC) (2022). HyNet Pipeline Agricultural Land Classification and Soil Resources (Ref. 9).
- Reading Agricultural Consultants (RAC) (2022). HyNet Pipeline Agricultural Land Classification and Soil Resources Talacre and Block Valves (Ref.10).

2.2. LIMITATIONS

- 2.2.1. This Outline SMP does not assess potential soil resources in non-agricultural land areas identified by the ALC survey (**Ref. 9**). The appointed Construction Contractor(s) will commission a soil resource survey of these areas, if soil resources are identified. The findings of this will be implemented into the Detailed SMP to ensure appropriate management of non-agricultural soils.
- 2.2.2. Peat areas within the DCO Proposed Development are not covered in this report. These are assessed in the Outline Peat Management Plan (**Document Reference: D.6.5.4.2**).
- 2.2.3. This Outline SMP does not consider human health and controlled water risk assessment associated with potentially contaminated soils. This is discussed in Chapter 11 Land and Soils [APP-063] of the Environmental Statement and subsequent addenda (ES Addendum 2023 Change Request 1 [CR1-124] and Change Request 2 [CR2-017]).
- 2.2.4. During the ALC survey some areas were not surveyed due to access issues. In these instances, the reasonable worst-case scenario has been applied, and these areas have been assumed to be BMV agricultural land. This ensures that necessary provision for soil handling and reinstatement are considered. However, these areas will be surveyed prior to the completion of the Detailed SMP by the appointed Construction Contractor(s) to ensure that the soils present are managed and reinstated appropriately.
- 2.2.5. The soil volume excavation estimations are assumed under a worst-case scenario using the Preliminary Design information that is currently available for

the pipeline route, AGIs, BVSs, open-trench and trenchless construction methods. This is to ensure that a suitable estimation of soil and associated requirements for management have been considered. The reasonable worstcase scenario assumptions used are discussed below.

- 2.2.6. The soil excavation volumes in this Outline SMP do not distinguish between upper and lower subsoil, and basal materials. These distinctions will be made in the detailed Soil Resource Plan (SRP) that will be included in the Detailed SMP.
- 2.2.7. Temporary construction features that require topsoil stripping, have not been considered in the calculations (including temporary access roads, localised and trenchless compounds). These will need to be factored in to soil excavation estimates by the Construction Contractor(s) in the detailed design stage with consideration also given to the use of proprietary systems such as 'trackway' to reduce soil excavation requirements and protect soils in relation to vehicle movements, where engineering and environmental constraints permit.

3. **RESULTS**

3.1. OVERVIEW

3.1.1. The ALC report for the <u>areas surveyed to date of DCO Proposed Development</u> states that 51% of agricultural land within the Newbuild Infrastructure Boundary is <u>Best and Most Versatile (BMV)</u> (Ref.9).

3.2. SOIL TEXTURES

- **3.2.1.** All soil textures for the sampling points in the ALC survey were determined through hand texturing and confirmed by laboratory analysis where necessary. Soil texture results are displayed in **Annex B** and the laboratory data can be found in the ALC report **(Ref. 9)**.
- **3.2.2.** The soil textures determined, and agroclimatic characteristics (see **Annex B**), are used to assign a resilience category for each soil profile that was assessed during the ALC survey. The resilience categories are described in **Table 3.1**.
- **3.2.3.** The resilience categories assigned in **Annex B** are limited to the sampling locations assessed during the ALC survey and cannot be generalised across larger areas of the site. To determine the resilience categories, across larger areas, the spatial extent of soil textures, identified by the ALC survey, will be assessed during soil stripping.

Topsoil and Subsoil Resilience	Soil Texture, Field Capacity Days and Wetness Class	
Low resilience	Soils with high clay and silt fractions (clays, silty clays, sandy clays, heavy silty clay loams and heavy clay loams) and organo-mineral and peaty soils where the Field Capacity Days (FCD) are 150 or greater.	
	Medium-textured soils (silt loams, medium silty clay loams, medium clay loams and sandy clay loams) where the FCDs are 225 or greater. All soils in wetness class (WCV or WCVI).	
Medium resilience	Clays, silty clays, sandy clays, heavy silty clay loams,	
	heavy clay loams, silty loams and organo-mineral and peaty soils where the FCDs are fewer than 150.	

Table 3.1 - Soil Resilience Characteristics*

Topsoil and Subsoil Resilience	Soil Texture, Field Capacity Days and Wetness Class
	Medium-textured soils (silt loams, medium silty clay loams, medium clay loams and sandy clay loams) where FCDs are fewer than 225.
	Sands, loamy sands, sandy loams and sandy silt loams where the FCDs are 225 or greater or are in wetness classes WCIII and WCIV.
High resilience	Soils with a high sand fraction (sands, loamy sands, sandy loams and sandy silt loams) where the FCDs are fewer than 225 and are in wetness classes WCI to WCII.

*Taken from IEMA (2022). A New Perspective on Land and Soil in Environmental Impact Assessment (Ref. 4).

3.3. SOIL EXCAVATION VOLUME ESTIMATIONS

DESIGN FEATURES

- 3.3.1. Newbuild Carbon Dioxide Pipeline construction features, that will involve soil excavation, were identified. The dimensions of these features were informed by **Chapter 3 Description of the DCO Proposed Development (Volume II)** in the Environmental Statement. Where design information is not currently available these are assumed under a reasonable worst-case scenario, to ensure that a suitably robust estimation of soil and associated requirements for soil management have been considered.
- 3.3.2. Dimensions and/or assumptions for the different construction features are as follows:
 - Open trench construction
 - Approximate footprint area along the entire indicative pipeline route used for the EIA: 108,000m²; 36,000m x 3m. These are based on assumptions of the final pipeline alignment length, and of the average trench width (considering that usually trenches are trapezoidal in crosssection) and does not consider surface features (e.g., rivers or roads).
 - The depth of the trench will be variable but is anticipated to be within the range of 2.5m 6.0m, with an assumed typical depth of 3m for the purposes of this assessment (Chapter 3 Description of the DCO Proposed Development (Volume II)).
 - Topsoil depth was assumed to be 0.3m.
 - Working width

- Approximate footprint area along the entire indicative pipeline route used for the EIA: 1,044,000m²; 36,000m x 29m (32m working width minus the 3m open trench construction width above).
- Topsoil will be stripped across the full working width.
- Topsoil depth was assumed to be 0.3m.
- Trenchless crossing pits
 - A total of 43 trenchless crossings over the length of the Newbuild Carbon Dioxide Pipeline (Appendix 3.1 – Table of Trenchless Crossings, Volume III) are proposed. An estimated 86 trenchless crossing pits will be required.
 - Assumed reasonable worst-case scenario of the most intrusive trenchless crossing method that could be used (Auger Boring method). This is assumed to have an entrance pit footprint area of 32m² (8m × 4m), an exit pit footprint area of 16m² (4m × 4m) and a depth of <u>9.56m</u> (Chapter 3 Description of the DCO Proposed Development, Volume II).
 - Topsoil depth was assumed to be 0.3m.
- AGIs and BVSs
 - There are four AGIs and six BVSs within the Proposed Development.
 - Anticipated topsoil and subsoil removal for each, and their associated access roads, has been considered at this design stage and is presented in **Table 3.6**.
 - Topsoil depth of 0.3cm is assumed.
 - Subsoil excavation is case by case, depending on cut and fill amounts.
 - Soil excavation volumes for Stanlow AGI were not calculated as this is a brownfield site.
- Centralised Compounds
 - This Outline SMP has assessed locations for <u>78</u> Centralised Compounds within the DCO Proposed Development. Although <u>8-7</u> centralised compounds are being assessed, only <u>7-6</u> are expected to be implemented to facilitate construction of the DCO Proposed Development (Chapter 3 Description of the DCO Proposed Development, Volume II).
 - Indicative footprint areas for each Centralised Compound are given in Table 3.5.
 - Topsoil will be stripped across the whole area. This is a reasonable worst-case scenario, as it is unlikely that the entire area of all compounds will be stripped. (Chapter 3 Description of the DCO Proposed Development (Volume II)).

- Topsoil and subsoil depths were informed by the average of ALC soil depth data where available. Table 3.5 shows the soil depths used for the volume calculations.
- There are existing buildings at Wood Farm Compound, therefore, the footprint area reported is the area without buildings, that will need to be stripped **(Table 3-5)**.

3.4. APPROXIMATE EXCAVATION VOLUME ESTIMATES

- 3.4.1. **Table 3.2** indicates that 32,400m³ of topsoil will be excavated for open trench construction (when rounded to the nearest 100m³). The amount of subsoil excavation will depend on the depth of the trench, anticipated to be within the range of 2.5m 6.0m, calculated as a range between 237,600m³ 615,600m³ (respectively). Subsoil excavation volumes are estimated to be 291,600m³ if the typical open trench depth of 3.0m is adhered to.
- 3.4.2. Approximately 313,200m³ of topsoil will be temporarily stripped for the working width **(Table 3.3)**. This topsoil will be reinstated.
- 3.4.3. An estimated 600m³ of topsoil and <u>1911,000800</u>m³ of subsoil <u>(when rounded to</u> <u>the nearest 100m³)</u> will be excavated for trenchless pit construction **(Table 3.4).**
- 3.4.4. The volume estimates for open trench and trenchless construction include volumes that are also discussed specifically within the Outline Peat Management Plan (Document Reference Number: D.6.5.4.2).
- 3.4.5. Material from trench excavations will be returned to the trench via backfilling. Any surplus material (that is chemically/physically suitable) shall be beneficially re-used for re-profiling within the working width before topsoil is reinstated on a field-by-field basis.
- 3.4.6. Where surplus soil materials are to be used for re-profiling, impacts on the soil properties (including soil horizon depth and water holding capacity) and ALC grade will be considered. In following pipeline installation best practices and the measures outlined in this Outline SMP, soil re-use will not result in soil degradation or ALC downgrading.
- 3.4.7. Centralised Compounds are anticipated to require approximately 1<u>02</u>4<u>3</u>,7800m³ of topsoil to be stripped **(Table 3.5)**. Topsoil will be reinstated at compounds.
- 3.4.8. Approximately 10,762m³ of topsoil and 4,388m³ of subsoil will be excavated for AGI and BVS construction **(Table 3.6)**. Excess subsoil and topsoil will be reused on site where suitable (e.g., for bank or drainage ditch backfilling). The Detailed SMP will detail how bank or drainage ditch backfilling will be undertaken and ensure that this is an appropriate re-use method for the surplus soil material.

3.4.9.3.4.8. If there is a requirement for materials to be disposed of off-site, disposal will be undertaken in accordance with waste management regulations (England and Wales). Material will be taken to an offsite recycling facility in accordance with an agreed Materials Management Plan (MMP) produced by the Construction Contractor(s).

				Depth (m)		Amount of soil stripped (m ³)	
Design Feature	Number of Features	Area (m²)	SubsoilUpper and lower layers and basal material (if 		Topsoil	Subsoil Upper and lower layers and basal material (if present at given depths)	
Open Trench Const	ruction						
2.5m trench depth	N/A	108,000	0.3	2.2	32,400	237,600	
3.0m trench depth	N/A	108,000	0.3	2.7	32,400 291,600		
6.0m trench depth	N/A	108,000	0.3	5.7	32,400	615,600	

Table 3.2 - Estimated Soil Excavation for Open Trench Construction

* Excavation volumes here do not distinguish between upper and lower subsoil layers and basal material. Volumes for each of these will be calculated separately in the detailed SRP that will be produced for the Detailed SMP.

Table 3.3 – Estimated Topsoil Stripping for Working Width

Area (m ²) Topsoil depth (m)		Volume of topsoil stripped (m ³)		
<u>1,044,000m</u>	<u>0.3</u>	<u>313,200</u>		

				Depth (m) Amount of soil stripp		soil stripped (m³)
Design Feature	Number of Features	Area (m²)	SubsoilTopsoilUpper and lower layers and basal material (if present at given depths)		Topsoil	Subsoil Upper and lower layers and basal material (if present at given depths)
Trenchless Cro	Trenchless Crossing Pits					
Entrance Pit	43	32	0.3	<u>9.2</u> 5.7	413	<u>12</u> 7, <u>659</u> 843
Exit Pit	43	16	0.3	<u>9.2</u> 5.7	206	<u>6</u> 3, <u>330</u> 921
				Total	619	1 <u>8</u> 4, <u>989</u> 7 64

Table 3.4 - Estimated Soil Excavation for Trenchless Crossings Pits

* Excavation volumes here do not distinguish between upper and lower subsoil layers and basal material. Volumes for each of these will be calculated separately in the detailed SRP that will be produced for the Detailed SMP.

Compound name	Area (m²)	Topsoil depth (m)	Volume of topsoil stripped (m ³)
Stanlow	66,000	0.32	21,120
Picton Lane	32,000	0.29	9,280
Chorlton Lane	41,000	0.35	14,350
Sealand Road	48,000	0.33	15,840
Wood Farm	55,200	0.30	16,560
River Dee	43,000	0.35	15,050
Shotton Lane	37,000	0.30	11,100
Northop Hall	35,000	0.30	10,500
		Total	<u>102,700</u> 113,800

Table 3.5 - Estimated Soil Excavation for Centralised Compounds

Name	Amount of soil stripped (m ³)		
	Topsoil	Subsoil Upper and lower layers and basal material (if present at	
		given depths)	
Ince AGI	1,660	0	
Northop Hall AGI	986	567	
Flint AGI	2,850	75	
Rock Bank BVS	700	323	
Mollington BVS	691	107	
Aston Hill BVS	1,025	336	
Cornist Lane BVS	1,090	2,350	
Pentre-Halkyn BVS	770	450	
Babell BVS	990	180	
Total	10,762	4,388	

Table 3.6 - Anticipated Soil Excavation for AGIs and BVSs

* Excavation volumes here do not distinguish between upper and lower subsoil layers and basal material. Volumes for each of these will be calculated separately in the detailed SRP that will be produced for the Detailed SMP.

4. SOIL MANAGEMENT DURING CONSTRUCTION

4.1. MAIN PRINCIPLES

- 4.1.1. All soil handling and storage procedures should conform to the Construction Code of Practice for the Sustainable Use of Soils on Construction Sites (Ref. 3). which is referenced in various sections below. Other guidance that is useful for sustainable soil handling is the Good Practice Guide for Handling Soils in Mineral Workings (Ref. 5), British Standard 3882:2015 'Specification for topsoil' (Ref. 12) and A New Perspective on Land and Soil in Environmental Impact Assessment (Ref. 4).
- 4.1.2. The Detailed SMP, that will be produced by the Construction Contractor(s), will include a detailed SRP. This will cover all soil resources for each stage of the DCO Proposed Development and will be in line with the Construction Code of Practice for the Sustainable Use of Soils on Construction Sites (Ref. 3). The SRP will utilise the ALC data to detail soil resources present; provide plans of the soil handling units; soil volumes; location of stockpiles; and restoration criteria.
- 4.1.3. The main threats to soils during construction are trafficking by vehicles/plant, and incorrect handling. These can both cause damage to soil structure through compaction and smearing (deformation). Deformation effects soil functions and the suitability for reuse within the DCO Proposed Development which can increase costs of reinstatement. The risk of deformation increases with increasing field capacity days (FCD) and average annual rainfall (AAR), along with lighter soil textures.
- 4.1.4. The following good practice measures should be followed to minimise the risk of damage to soil structure:
 - A suitably qualified soil scientist will be appointed by the Construction Contractor(s) to monitor all soil handling activities, and good practice measures, as stipulated in this Outline SMP;
 - All individual soil horizons will be stripped, stored, and reinstated separately. This includes topsoil, upper and lower subsoil layers, and basal material (if present at the stripping depths). These will be identified for the detailed SRP in the Detailed SMP, and individually managed;
 - No trafficking of vehicles/plant or materials storage to occur on unprotected topsoil or reinstated soil;
 - Consideration of use of 'trackway' or similar low-ground pressure systems at temporary works zones for vehicles, to reduce excavation and protect soils;

	 Only direct movement of soil should occur between the areas being stripped/reinstated to/from designated stockpiles (minimising handling and/or ad hoc storage); 					
	 No soil handling to be carried out when the soil moisture content is above the lower plastic limit. 					
	 No mixing of topsoil with subsoil, or of soil with other materials (unless planned and part of a soil ameliorating strategy); 					
	 Store soil only in designated soil storage areas; 					
	 Stockpiles should not be compacted, but instead gently consolidated; 					
	 Plant and machinery should only work when ground/soil surface conditions enable their maximum operating efficiency and be maintained in a safe and efficient working condition; 					
	 Detailed daily records to be maintained, detailing operations undertaken and Site and soil conditions; and 					
	 Ground should be suitably prepared prior to the reinstatement of soil and an appropriate aftercare plan in place. 					
4.1.5.	For each stockpile a plan must be kept and maintained detailing:					
	• Material type (topsoil, upper subsoil, lower subsoil) as informed by Annex B;					
	 Date/ time when soil was stockpiled and weather conditions; 					
	Volume of material;					
	 Stockpile location; and 					
	Source location of material.					
4.1.6.	The Construction Contractor(s) will be responsible for ensuring that daily records of site and soil conditions are kept, and that a detailed stockpile plan is created and maintained.					
4.2.	SOIL MOISTURE CONDITIONS FOR HANDLING					
4.2.1.	Handling soils at appropriate moisture levels avoids damage to soil structure (compaction and smearing). Due to the low resilience of the soils within the Newbuild Infrastructure Boundary, adhering to the moisture conditions for handling is extremely important.					
4.2.2.	Following the Institute of Quarrying guidance (Ref. 5) , the DCO Proposed Development is based in climatic zone 1. This means that the proposed handling times are between Mid-April and Early-October, when the climatic zone wetness estimates, clay proportion and depth of soil horizon are considered.					

4.2.3. Removal of excess vegetation, soil stripping, reinstatement and postreinstatement cultivation should not commence if the moisture of the soil (either in the field or in the stockpiles) is above its lower plastic limit. The plastic limit can be determined using the methodology set out in Supplementary Note 4 'Soil Wetness' in the Institute of Quarrying guidance (Ref. 5).

- 4.2.4. Works can be carried out during occasional showers, however, must cease during prolonged or intense rainfall that increases the soil moisture to above the lower plastic limit. If the works are interrupted by a rainfall event, soil stripping should be suspended; and where the soil profile has already been disturbed, the works should be completed to the base level in that location. Before recommencing work, soil moisture content should be retested.
- 4.2.5. The Construction Contractor(s) should appoint a soil scientist who is suitably experienced and competent in carrying out such soil moisture tests.

4.3. PREPARATORY WORKS

- 4.3.1. Before any work on site involving vehicles commences the Construction Contractor(s) will:
 - Ensure to mark, and signpost the following areas within the Newbuild Infrastructure Boundary including:
 - The undisturbed areas where no construction activities will take place.
 Here soil will not be stripped or trafficked for purposes other than planting, cultivation, and vegetation maintenance;
 - Tree protection zones;
 - Areas from which soils will be stripped;
 - o Locations of topsoil and subsoil stockpiles; and
 - Haul routes.
 - Remove scrub vegetation (following any seasonal ecological constraints and mitigation requirements) in the areas requiring stripping; and
 - Remove other vegetation present, so that it is not incorporated into the soil strip. If applicable, cut the grass/crop to ground level.

4.4. STRIPPING

- 4.4.1. The stripping method will follow the method within **Ref. 3** that also includes illustrations of best practice guidance. This method is summarised below.
- 4.4.2. Subsoils will only be stripped if they are being re-used or are of low resilience to reduce compaction. Areas which are going to be used for subsoil storage should have the topsoil stripped to avoid mixing. Subsoils of high to medium resilience do not need stripping underneath haul routes, if they are of low resilience it is advised to strip to a more resilient layer and ensure proper decompaction is carried out following the construction stage.

- 4.4.3. Careful management and consideration of alternative methodologies (e.g. 'trackway') may mean subsoil does not need to be stripped if care is taken. Topsoil must be stripped before any subsoil destined for reuse is stripped to reduce the risk of mixing the horizons.
- 4.4.4. Where feasible, vehicles will be tracked to reduce compaction and stripping should be carried out in the driest conditions possible.
- 4.4.5. Key points to minimise soil compaction, and maximise readiness for re-use include:
 - Integrating all soil stripping, moving, storage and reuse/reinstatement operations into the enabling works programme;
 - Ensuring dump trucks only operate on the "basal"/non-soil layer, the wheels must not travel on the soil layer;
 - Ensuring the excavator only operates on topsoil layer;
 - Plant and machinery only working when ground conditions allow maximum efficiency;
 - The moisture content of the soil must be below the lower plastic limit. If it cannot be avoided, provision needs to be made for remediation of soil structure prior or following reinstatement;
 - The operation must cease during periods of rainfall and only recommence if the forecast predicts no further rainfall for a day and soil moisture conditions are suitable;
 - Ensuring the lower soil layers must not be left exposed to rainfall, this is achieved by always stripping to the basal layer before rainfall occurs and/or before stripping is suspended;
 - Protecting the soil and the basal layer from ponding of water by diverting water inflow away from it;
 - Not working when there is standing water on the soil surface or the basal layer;
 - Not mixing topsoil with subsoil and soil with other construction materials; and
 - Storing topsoil on topsoil and subsoil on subsoil or on the basal layer
- 4.4.6. This best practice will be adhered to as far as reasonably practicable.

TOPSOIL STRIPPING METHOD

4.4.7. Prior to commencement, the width of each strip will be determined by looking at the length of the excavator less the stand-off to operate. Using the reach of the excavator to its full potential before moving it, reduces the number of areas subject to the weight of the standing plant.

- 4.4.8. Following this, remove surface vegetation by blading off, by scarification and raking (not less than two weeks before stripping commences to reduce the likelihood of anaerobic conditions forming during storage). If the above method is not viable, the careful application of a suitable non-residual herbicide may be necessary.
- 4.4.9. The transport vehicle will run on the basal layer under subsoil if subsoil is also to be stripped. If only topsoil is to be stripped, the vehicle would run on the subsoil layer.
- 4.4.10. Stripping will be undertaken by an excavator standing on the surface of the topsoil, digging the topsoil to its maximum depth (topsoil depths shown in Annex B) and loading into site or off-site transport vehicles.
- 4.4.11. The earthmoving plant used will be appropriate to the volume of soil to be stripped, site size and hauling distances. This will be determined by the Construction Contractor(s) for the Detailed SMP.

SUBSOIL STRIPPING METHOD

- 4.4.12. For each soil unit the soil layers above the base/formation layer will be removed in sequential strips that can be up to 6m wide (the reach of a 360° excavator). Using an excavator bucket with teeth is preferable to achieve desired outcome.
- 4.4.13. Where there is a cover of topsoil, that layer is removed first before stripping subsoil to the specified depth.
- 4.4.14. The soil transport vehicle will run on the layer beneath the required subsoil stripping depth.
- 4.4.15. The earthmoving plant used will be appropriate to the volume of soil to be stripped, site size and hauling distances. This will be determined by the Construction Contractor(s) for the Detailed SMP.

4.5. SOIL STORAGE

- 4.5.1. Resilience has been assigned to each soil horizon to inform the height at which soil (Annex B) will be stockpiled to. This area has a relatively average AAR (678mm to 792mm) and FCD (152 to 188) which influences the handling resilience of the soil, Annex A shows the agroclimatic data by ALC sample point. Stockpile height should not exceed 2m as far as reasonably practicable.
- 4.5.2. Soil stockpiles will be split into different soil types, including topsoil, upper subsoil, lower subsoil, and basal material. <u>Through appropriate separation and storage of soils, particularly for topsoil, this will ensure retention of any associated seed bank within the soils, which will be reinstated in the correct layering post construction.</u>

- 4.5.3. After being stripped, soil units will be stored in stockpiles close to their source and stockpiles should be in areas where they will not be disturbed during construction activities.
- 4.5.4. Soil stripping, storage and reinstatement must be integrated into the enabling works programme by the Construction Contractor(s).

4.6. STOCKPILE LOCATIONS

- 4.6.1. Stockpiles will be located on medium or high resilience soils away from ditches or watercourses to reduce the impact on controlled waters. This will include temporary storage of materials at a minimum distance of 10m from any watercourses and 50m from any watercourse identified on Ordnance Survey 50,000 scale mapping (**Ref. 2**).
- 4.6.2. Stockpiles will be located away from trees, hedge lines and existing/future excavations. This avoids repeated handling/transfer of soil, reducing potential for degradation of the soil structure.
- 4.6.3. Each source area will have its own stockpile location, with topsoils and subsoils stockpiled separately.
- 4.6.4. Stockpile locations within will be determined by the Construction Contractor(s) when the design has been finalised. The locations will be detailed in the Detailed SMP.

4.7. FORMING THE STOCKPILES

- 4.7.1. Dimensions of the stockpiles may be adjusted but the angle of repose shall not exceed 1 in 2 (25°) even if seeded and regularly maintained.
- 4.7.2. Each stockpile must be clearly marked and labelled with the source area, material type and volume. These labels will be kept up to date.
- 4.7.3. Soil stockpiles should also be clearly mapped.
- 4.7.4. The dry and wet stockpiling methods from **Ref. 3** are summarised below:

DRY SOIL STOCKPILING METHOD

- Loose tip heaps of soil from a dump truck starting at the furthest point in the storage area, working towards the access point;
- A tracked excavator or dozer then levels the heaps and firms the surface to enable a second layer to be added;
- Repeat until the stockpile has reached the desired height; and
- With a tracked excavator or dozer, compact and re-grade the sides and top
 of the stockpile to a smooth gradient to reduce infiltration and the likelihood
 of ponding.

WET SOIL STOCKPILING METHOD

- Tip soil into a line of heaps to form a "windrow", start at the furthest point, finish at the access point;
- Space windrows sufficiently apart so a tracked dozer or excavator can move between them to heap the soil up to 2m maximum;
- No machinery should traverse the windrow to avoid compaction and subsequent structural damage to the soil;
- Once the soil has reached a non-plastic consistency, which often takes many weeks, combine the windrows to form larger stockpiles using a tracked excavator; and
- Regrade and compact the sides and top of the stockpile using a tracked excavator or dozer, to prevent ponding and infiltration.

4.8. MAINTENANCE OF STOCKPILES DURING STORAGE

4.8.1. Seeding is advised if soils are to be stockpiled for over six months or over winter. In these events stockpiles will be seeded with a suitable grass mix to protect against soil erosion, minimise nutrient loss and maintain its biological activity. The grass will be cut two to three times a year and removed completely before reinstatement of soil.

5. SOIL REINSTATEMENT

5.1. GENERAL METHODS TO BE USED WITHIN RESTORATION

- 5.1.1. All methods should align with the guidance on handling and soil moisture content that have been discussed in this Outline SMP.
- 5.1.2. Any decompaction or remediation activities will be undertaken when the soils are in a suitably dry condition. Soil moisture should be tested using the method outlined in section 4.2.
- 5.1.3. Soil horizons should be reinstated sequentially in the order they were removed
 basal material, lower subsoil horizons, to upper subsoil horizons, to topsoil.
 This will be ensured by following best practice for stockpiling which includes
 clear labelling of stockpiles and soil textures, avoiding horizons being mixed.

5.2. EXCAVATION OF SOIL STOCKPILES

- 5.2.1. The method to be followed for the excavation of soil stockpiles is taken from **Ref. 3** and explained below.
- 5.2.2. Dump trucks will enter on the basal layer (if topsoil and subsoil are stripped) or subsoil (if topsoil only stripped). If a back-acting excavator is used, it must stand on top of the stockpile to load the dump truck. The stockpile will be dug to the base before moving progressively back along its axis.
- 5.2.3. If a front-loading machine is used, any exposed edges or surface of the stockpile will be shaped to reduce the pooling of water at the onset of rain and end of each day.

5.3. PREPARATION OF THE BASE LAYER

- 5.3.1. Areas where stockpiles, haul routes and other high traffic are located will require decompaction before topsoil reinstatement. This includes ripping subsoils in agricultural areas to return them to their ALC grade and not introduce a wetness limitation. For decompaction, a wing-tine ripper is recommended.
- 5.3.2. Large stones and debris should be removed from the area before reinstatement.

5.4. SOIL REINSTATEMENT

- 5.4.1. All horizons will be reinstated in the same order as they were before disturbance, avoiding mixing of textures where possible.
- 5.4.2. Reinstatement will take place when the soil is below the plastic limit, if it rains more than 10mm in 24 hours it is advised to suspend reinstatement until the soil

is below the plastic limit. Soil is not advised to be reinstated when the ground is frozen or in other adverse weather conditions.

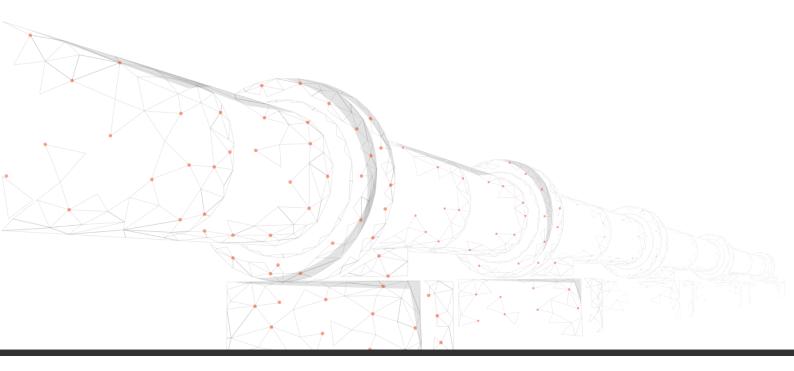
- 5.4.3. To return soils to an area the loose tipping method is recommended as this allows minimal disturbance to the soils structure. This method is described below (Ref.3).
- 5.4.4. Loosen the receiving group using a wing-tine ripper, with a toothed bucket (which avoids excessive smearing) and load the stockpiled soil in to dump trucks to transport and discharge the soil into the desired location.
- 5.4.5. The soil will be reinstated in strips based on the reach of the excavator. An excavator will be used to spread the soil to the desired thickness. If replacing both subsoil and topsoil, all subsoil will be laid then all topsoil. Topsoil will be laid without the excavator travelling on the newly placed subsoil.
- 5.4.6. Agricultural topsoil can be mounded to a maximum of 400mm above previous ground level, providing the landowner/farmer is in agreement and the soil meets suitability criteria for reuse. Locally excavated soil material may also be spread across the working width where appropriate to do so.
- 5.4.7. All reinstated topsoil will be cultivated to its full depth to reduce compaction and increase aeration. Cultivation should remove the presence of any large, compacted lumps. For seeding, a maximum aggregate size of 10mm is recommended. If any undesirable materials (such as stones or fill over 50mm in any dimension) are present, it is recommended to remove them by raking or picking.
- 5.4.8. All land will be reinstated to the standards of the baseline ALC grade (prior to disturbance) as far as is reasonably practicable. The limiting factors of each grade can be found in the MAFF revised guidelines and criteria for grading the quality of agricultural land **(Ref. 6)**. This includes all BMV land being returned to its original quality.
- 5.4.9. A target specification for the restored soils (according to location, soil types, end use and required ALC grade) will be developed, by a suitably qualified Soil Scientist, and reported in the Detailed SMP.

6. AFTERCARE OF REINSTATED SOILS

- 6.1.1. After reinstatement, soils tend to self-compact and settle, especially those with low resilience. It can take between one to three years for their structures to stabilise. This can lead to waterlogging and anaerobic conditions, which can contribute to erosion and flooding, but can also lead to negative impacts on root function and plant health.
- 6.1.2. To avoid the negative impacts above reinstatement will be inspected by a competent soil scientist and an aftercare plan developed to help the successful reinstatement of the soils. For example, keeping livestock off reinstated grassland in the winter will reduce the likelihood of compaction due to the soils structure being unstable. The aftercare plan will be prepared by the Construction Contractor as part of the Detailed SMP.

7. SOIL REUSE AND DISPOSAL

- 7.1.1. In the event that there is a soil surplus from construction activities, all suitable (chemically/physically suitable and asbestos free) material will be beneficially reused on site through measures put in place through the Materials Management Plan (MMP) that will be produced by the Construction Contractor(s) as part of the CEMP.
- 7.1.2. If excavated materials are unsuitable for reuse, such as contaminated soils or hazardous materials (not soils i.e., anthropogenic material) this will be removed off-site and disposed in accordance with an agreed MMP. The Construction Contractor(s) will follow appropriate legislative requirements and best practice. The material would be appropriately classified prior to transport to a suitably licenced landfill /treatment centre.
- 7.1.3. The landowner / occupier will be engaged where any off-site disposal is required. In such instances, disposal will be undertaken in accordance with waste management regulations (England and Wales). Further detail is provided in Chapter 14 Materials and Waste (Volume II).


8. SUMMARY AND CONCLUSIONS

- 8.1.1. This Outline SMP estimates reasonable worst-case volumes of soil excavation and sets out best practice measures for soil management. This best practice will be adhered to during, and after, the construction of the DCO Proposed Development. The Outline SMP also identifies further actions required by the appointed Construction Contractor(s), for the Detailed SMP. It is recognised that there is a degree of professional judgement involved in quantifying assumptions.
- 8.1.2. There are a number of opportunities to reduce the extent of excavation and/or increase the extent of re-use opportunities as good practice measures. These include:
 - reducing excavation depth required for the DCO Proposed Development infrastructure;
 - Seeking to minimise open trench depth towards the lower end of the range.
 - avoiding wholescale excavation of subsoil at AGIs and BVSs.
 - consideration of application of 'trackway' to reduce excavation volumes and protect soil at relevant locations where vehicle movements are required in temporary works zones;
 - re-use of all excavated material for engineering fill and landscaping; and
 - appropriate re-use of excavated material for reinstatement and profiling on site.
- 8.1.3. Applying the reasonable assumptions discussed above, it is expected there will be sufficient re-use opportunities within the Newbuild Infrastructure Boundary to avoid any surplus.
- 8.1.4. Any material identified as waste shall be managed in accordance with appropriate legislation and regulatory guidance.

REFERENCES

- **Ref. 1** ADAS (1994). Agricultural Land Classification Detailed Post 1988 ALC survey, Hapsford MSA Jn.14 M56, Helsby (ALCW15194).
- **Ref. 2** CIRIA (2006). Control of water pollution from linear construction projects: technical guidance. Publication C648; Construction Industry Research and Information Association, London.
- **Ref. 3** DEFRA (2009). Code of practice for the sustainable use of soils on construction sites. [online] Available at: https://www.gov.uk/government/publications/code-of-practice-for-the-sustainable-use-of-soils-on-construction-sites [Accessed January 2022].
- Ref. 4 Institute of Environmental Management and Assessment (IEMA) (2022). A New Perspective on Land and Soil in Environmental Impact Assessment. February 2022.
- Ref. 5 Institute of Quarrying (2021). Good Practice Guide for Handling Soils in Mineral Workings. [online] Available at: https://f.hubspotusercontent30.net/hubfs/885685/Soils%20Guidance/IQ%20 Soil%20Guidance%20Part%201.pdf [Accessed June 2022].
- Ref. 6 Ministry of Agriculture, Fisheries and Food (MAFF) (1988). Agricultural Land Classification of England and Wales: Revised guidelines and criteria for grading the quality of agricultural land. [online] Available at: file:///C:/Users/UKKLH002/Downloads/alc-criteria-1988.pdf [Accessed July 2022].
- **Ref. 7** Ministry of Housing, Communities and Local Government (2021). National Planning Policy Framework. [online] Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads /attachment_data/file/1005759/NPPF_July_2021.pdf [Accessed July 2022].
- Ref. 8 Welsh Government (2021). Welsh Government | Planning Policy Wales (Edition 11, February 2021). [online] Available at: https://gov.wales/sites/default/files/publications/2021-02/planning-policywales-edition-11_0.pdf [Accessed July 2022].
- **Ref. 9** Reading Agricultural Consultants (RAC) (2022). HyNet Pipeline Agricultural Land Classification and Soil Resources.
- **Ref. 10** Reading Agricultural Consultants (RAC) (2022). HyNet Pipeline Agricultural Land Classification and Soil Resources Talacre and Block Valves.
- Ref.11 British Standard (BS) 1377-1 (1990). Methods of test for Soils for civil engineering purposes — Part 1: General requirements and sample preparation. ISBN 0 580 17692 4.
- Ref. 12 British Standard (BS) 3882:2015 'Specification for topsoil'

Annexures

Annex A

AGROCLIMATIC DATA

HyNet CO₂ PIPELINE Outline Construction Environment Management Plan (OCEMP)

Table A1	- Agroclimatic	data by	/ ALC sam	ple point

ALC sample points	Field Capacity Days	Average Annual Rainfall
1 to 52	155	691
53 to 94	152	678
95 to 137	156	
138 to 188	158	
192 to195	171	
196 to 215	180	778
238 to 269	184	792
270 to 294	188	

Annex B

SOIL RESILIENCE

Soil texture		
cS	coarse sand	
mS	medium sand	
fS	fine sand	
LcS	loamy coarse sand	
LmS	loamy medium sand	
LfS	loamy fine sand	
cSL	coarse sandy loam	
mSL	medium sandy loam	
fSL	fine sandy loam	
cSZL	coarse sandy silt loam	
mSZL	medium sandy silt loam	
fSZL	fine sandy silt loam	
MZ	marine light silt	
ZL	silt loam	
cSCL	coarse sandy clay loam	
SCL	sandy clay loam	
fSCL	fine sandy clay loam	
mCL	medium clay loam	
CL	clay loam (borderline)	
hCL	heavy clay loam	
mZCL	medium silty clay loam	
ZCL	silty clay loam (borderline)	
hZCL	heavy silty clay loam	
SC	sandy clay	
LC	loamy clay	
С	clay	
ZC	silty clay	

Sample number	Topsoil (T)	Depth o	of horizon	Soil texture	Resillience
1	т	0 21	21 35	hZCL	Low Medium
		35	80	ZL	Medium
		80	120	ZC	Low
2	Т	0	10		Low
	т	10	25 50	c c	Low
		25 50	75	zc	Low Low
		75	120	PL	Low
3	Т	0	20	oZC	Low
pit		20	60 120	C PL	Low
4	т	60 0	5	ohZCL	Low Low
4	Т	5	25	C	Low
		25	33	С	Low
		33	70		Low
-	-	70 0	120 25	C C	Low Low
5	т	25	48	zc	Low
		48	120	PL	Low
6	т	0	25	С	Low
		25	45		Low
		45 80	80 120	PL PL	Low Low
7	т	0	22	hZCL	Low
		22	55		Low
		55	80	PL	Low
		80	120	PL	Low
8	Т	0 39	39 50		Medium Medium
		50	80 80		Low
		80	120		Low
9	Т	0	36		Medium
		36	70		Medium
		70 100	<u>100</u> 120		Low Low
10	т	0	35	mCL	Medium
		35	48		Medium
		48 90	<u>90</u> 120		Low
11	т	90	35	SCL	Low Medium
	'	35	39		Low
		39	50		Medium
		50	<u>90</u> 120		Low
12	т	90 0	35		Low Medium
12	I	35	40		Medium
		40	93	SCL	Medium
		93	<u>95</u>		Low
13		95 0	120		Low High
15	т	35	40		Medium
		40	50	С	Low
		50	90		Low
		90 100	<u>100</u> 120		High High
14	т	0	30		Medium
		30	75		Medium
		75	<u>80</u>		Medium
<u> </u>	╞╴╴┥	80	120		Low
15	Т	0 38	38 48		Medium Medium
		48	70		Low
		70	<u>90</u>		Low
		90	120		Low
16	т	0 35	35 55		Medium Medium
		55	80		Low
		80	120		Low
17	т	0	38		Medium
		38	48 <u>90</u>		Low Low
		48			

		90	120	С	Low
18	т	0	38	mCL	Medium
		38	70	С	Low
		70	<u>90</u>	С	Low
		90	120	С	Low
19	Т	0	35	mCL	Medium
		35	40	mCL	Medium
		40	55	SCL C	Medium
		55 90	<u>90</u> 120	c	Low Low
20	т	0	25	mCL	Medium
pit	I	25	40	hZCL	Low
P.C		40	100	С	Low
		<u>100</u>	120	С	Low
21	Т	0	37	CL	Medium
		37	68	LmS	High
		68	90	С	Low
		90	120	С	Low
22	Т	0	35	SCL	Medium
		35	45	SCL	Medium
		45 57	57 120	SC C	Low Low
23	т	0	32	SCL	Medium
pit	I	32	40	SCL	Medium
P.1.		40	57	SCL	Medium
		57	80	С	Low
		80	120	С	Low
24	Т	0	37	mCL	Medium
		37	<u>90</u>	С	Low
		90	120	С	Low
25	т	0	36	mCL	Medium
		36	70	С	Low
		70 90	<u>90</u> 120	C C	Low
	_			SCL	Low
26	Т	0 36	36 55	C	Medium Low
		55	<u>90</u>	c	Low
		90	120	C	Low
27	т	0	35	SCL	Medium
		35	42	SCL	Medium
		42	70	С	Low
		70	<u>90</u>	С	Low
		90	120	С	Low
28	Т	0	25	mSZL	High
		25	35	mSZL	High
		35	43	hCL	Low
		43 90	<u>90</u> 120	C C	Low Low
20	-	0	38	mCL	
29	Т	38	58	SCL	Medium Medium
		58	90	C	Low
		90	120	C	Low
30	Т	0	35	mCL	Medium
		35	45	SCL	Medium
		45	<u>100</u>	С	Low
		100	120	С	Low
31	Т	0	20	mCL	Medium
		20	35	mCL	Medium
		35	38	hCL	Low
		38	70	С	Low
		70 90	<u>90</u> 120	C C	Low Low
20	–	0	32	SCL	Medium
32	Т	32	32	SCL	High
		45	45 51	mCL	Medium
		51	80	C	Low
		80	100	C	Low
		<u>100</u>	120	C	Low
			33	mSZL	High
33	Т	0		MOZL	Ingri
33	Т	0 33	40	SCL	Medium
33	Т				
33	Т	33	40	SCL	Medium

40 48	SCL	Medium
48 <u>100</u>		Low
100 120		Low
35 T 0 40		High
40 <u>100</u> 100 120		High High
36 T 0 40		High
40 43		Medium
43 <u>90</u>		Low
90 120		Low
37 T 0 43	mSZL	High
43 60	SCL	Medium
60 <u>100</u>		Low
100 120		Low
38 T 0 38		High
38 70		Low
70 <u>100</u> 100 120		Low
		Low
39 T 0 40 40 <u>60</u>		High Medium
60 120		Low
40 T 0 40		High
40 55		Medium
55 70		Low
70 <u>80</u>		Low
80 120		Low
41 T ⁰ 40	SCL	Medium
40 50	SCL	Medium
50 <u>100</u>		High
100 120		High
42 T ⁰ 38		Medium
38 70		Medium
70 <u>90</u>		Low
90 120		Low
43 T 0 28 28 46		Medium
28 46 46 85		Medium Low
85 100		Low
<u>100</u> 120		Low
44 T 0 27	SCL	Medium
27 45		Medium
45 78	SL	High
78 105	С	Low
<u>105</u> 120	С	Low
45 T 0 27		Medium
27 40		Medium
40 74		Medium
74 85 85 100		Low
100 120		Low Low
46 T 0 27		Medium
27 40		High
40 75		High
75 105		Low
105 120	С	Low
47 T 0 27		Medium
27 45		Medium
45 70		Low
70 120		Medium
48 T 0 27		Medium
27 45		Medium
45 65 65 100		Low
100 120		Low Low
49 T 0 27		Medium
49 1 0 27 27 45		Low
45 95		Low
<u>95</u> 120		Low
50 T 0 25	SL	High
		Medium
29 51		
		Low
29 51	C C	Low Low

					m
51	т	0	28	SL	High
		28	40	SL/SCL	Medium
		40	50	С	Low
		50	80	С	Low
		80	120	С	Low
52	Т	0	28	SL	High
52	I				
		28	40	SL/SCL	Medium
		40	55		Low
		55	65	SL	High
		65	95	С	Low
		<u>95</u>	120	С	Low
53	Т	0	28	oSCL	Low
		28	43		Medium
		43	55	hCL	Low
		55	75		Low
		75	120	С	Low
54	Т	0	36	SL	High
		36	70	LS	High
		70	120	LS	High
55	Т	0	35	SL	High
		35	70	mS	High
		70	120		
					High
56	Т	0	28	SCL	Medium
		28	40	SL	High
		40	80	SL	High
		80	120	CL/C	Low
57	т	0	28	SL	High
57	I	28	45	SL	High
		45	45	oLS	
					Low
58	Т	0			High
		38	70	SL	High
		70	105	mS	High
		<u>105</u>	120	mS	High
59	Т	0	38	SL	High
		38	70	SL	High
		70	110		
			110	mS	High
		<u>110</u>			High
60	Т	0	38		High
		38	80	LmS	High
		80	105	SC	Low
		105	120	LS	High
61	Т	0	40	SL	High
•••		40	65	SL	High
		65	95		High
		95	120		
					Medium
62	Т	0	30	ohZCL	Low
		29	120	PL	Low
63	Т	0	10	PL	Low
	т	10	23	ohZCL	Low
		23	40	PL	Low
		40		PL	Low
64	т	0	30	ohZCL	Low
04	I	29	120	PL	
					Low
65	Т	0	29	ohZCL	Low
		29	120	PL	Low
66	Т	0	28	ohZCL	Low
		28	35	PL	Low
		35	120	PL	Low
67	Т	0	28		Low
07	I	28	40		
		28 40			Low
					Low
		75	120		Low
68	Т	0	25	ohZCL	Low
		25	40	PL	Low
		40	120	PL	Low
69	т	0	15	ohZCL	Low
03	I	15	28		Low
		28			Low
70	Т	0	28		Medium
		28	40	SCL	Medium
		40	68	SCL	Medium
		68	80	С	Low
		68 <u>80</u>	80 120		Low Low

71	Т	0	28	SCL	Medium
		28	40	SCL	Medium
		40	65	SCL	Medium
		65	80	С	Low
		<u>80</u>	120	С	Low
95	Т	0	30	mSZL	High
		30	40	mSZL	High
		40	68	SCL	Medium
		68		С	Low
		85	120	С	Low
96	т	0	39	mZCL	Medium
		39	<u>60</u>	hCL	Low
		60		С	Low
97	т	0	33	mCL	Medium
97	I	33	<u>60</u>	C	Low
		60		c	
					Low
98	Т	0	20	mCL	Medium
		20	33	hCL	Low
		33		С	Low
		60		С	Low
99	Т	0	38	SCL	Medium
		38		SCL	Medium
		55	<u>80</u>	С	Low
		80	120	С	Low
100	Т	0	33	hCL	Low
		33	<u>50</u>	С	Low
		50	120	С	Low
101	Т	0	40	mCL	Medium
		40	55	hCL	Low
		55		С	Low
		80		С	Low
102	т	0	35	mCL	Medium
102	I	35	45	hCL	Low
		45	90	C	Low
		43 90		c	Low
400	_				
103	Т	0	30	mCL	Medium
		30	40	mCL	Medium
		40 50	<u>50</u> 120	SCL	Medium
		50		С	Low
104	т	0	35	hCL	Low
		35	<u>90</u>	С	Low
		90		С	Low
105	Т	0	35	mCL	Medium
		35	68	SCL	Medium
		68	<u>80</u>	С	Low
		80	120	С	Low
106	Т	0	25	mCL	Medium
		25	<u>28</u>	С	Low
		28	120	С	Low
107	Т	0	36	mCL	Medium
		36	48	hCL	Low
		48		С	Low
		70		C	Low
108	т	0	35	mSZL	High
100	I	35	43	SCL	Medium
		43		C	Low
		43 80		c	
	-				Low
109	Т	0	30	mCL	Medium
		30		mCL	Medium
		40		hCL	Low
		55			Low
		85		С	Low
110	Т	0	35	mCL	Medium
		35	40	hCL	Low
		40	58	hCL	Low
		58	<u>90</u>	С	Low
		90		С	Low
111	т	0	30	hCL	Low
-	-	30	42	hCL	Low
				С	Low
		90		C	Low
110	т				Medium
112	I				Medium
112	т	42 90 0 20	20		Lov Me

	I	35	42	mZCL	Medium
		42	42 <u>90</u>	C	Low
		90	120	С	Low
113	Т	0	33	mSZL	High
		33	40	hCL	Low
		40	70	SCL	Medium
		70 80	<u>80</u> 120	C C	Low Low
114	т	0	30	mCL	Medium
114	1	30	40	hCL	Low
		40	48	С	Low
		48	75	С	Low
		75	<u>90</u>	С	Low
		100	120	С	Low
115	Т	0	38	mSL SCL	High
		38 48	48 <u>90</u>	C	Medium Low
		90	120	C	Low
116	Т	0	30	mCL	Medium
		30	38	SCL	Medium
		38	48	SCL	Medium
		48	<u>90</u>	С	Low
		90	120	C	Low
118	Т	0 35	35 60	mSZL SCL	High Medium
		60	80 <u>90</u>	C	Low
		90	120	C	Low
119	Т	0	35	hCL	Low
		35	40	SCL	Medium
		40	65	SCL	Medium
		65 90	<u>90</u> 120	C C	Low
400	-	90	38	SCL	Low
120	Т	38	45	hCL	Medium Low
		45	60	С	Low
		60	<u>90</u>	С	Low
		90	120	С	Low
121	Т	0	30	mCL	Medium
		30	40	mCL	Medium
		40 70	70 <u>90</u>	hCL C	Low Low
		90	<u>90</u> 120	c	Low
122	т	0	35	mSZL	High
		35	48	SCL	Medium
		48	<u>70</u>	С	Low
		70	120	С	Low
123	Т	0	30	SCL	Medium
		30	43	SCL	Medium
		43 90	<u>90</u> 120	C C	Low Low
124	т	0	20	SCL	Medium
		20	35	SCL	Medium
		35	48	SCL	Medium
		48	70	С	Low
		70	80	SCL	Medium
		80 100	<u>100</u> 120	mS mS	High
105	-	0	20	mS	High Medium
125	Т	20	38	mCL	Medium
		38	<u>70</u>	C	Low
		70	120	С	Low
126	Т	0	33	hCL	Low
		33	38	hCL	Low
		38	<u>60</u>	С	Low
		60	120	C	Low
127	Т	0 39	30 50	hCL hCL	Low
		39 50	<u>50</u> 120	hCL C	Low Low
128	т	0	33	hCL	Low
.20		33	38	hCL	Low
		38	<u>60</u>	С	Low
		60	120	С	Low
			30		High

I		30	40	mSZL	High
		40	49		Medium
		49 75	75 <u>80</u>	C C	Low Low
		80			Low
138	Т	0	38	ZL	Medium
		38	55	ZL	Medium
		55	<u>100</u>	fSL fSL	High
100	-	100	120 43	LfS	High
139	Т	43	43 <u>70</u>	fS	High High
		70	120	fS	High
140	Т	0	35	ZL	Medium
		33	43	fSL	High
		43 80		fS fS	High High
141	Т	0	45	fSL	High
141	I	45	80	fS	High
		80	120	fS	High
142	Т	0	43	LfS	High
		43 80	<u>80</u> 120	fS fS	High
143	Т	0	43	fSL	High High
140	I	43		fS	High
		80		fS	High
144	Т	0	39	ZL	Medium
		39	<u>80</u> 120	fS fS	High
145	-	80	120 30	ZL	High Medium
145	Т	30			Medium
		43		fS	High
		80	120	fS	High
146	Т	0	30	ZL	Medium
		30 43	43	ZL fS	Medium
		43 80		fS	High High
147	т	0	40	fSL	High
		38	58	fS	High
		58	<u>70</u>	fS	High
110	_	70 0		fS ZL	High
148	Т	30	30 43	ZL	Medium Medium
		43	<u>100</u>	fS	High
		100	120	fS	High
149	Т	0	30	ZL	Medium
		30 43	43 <u>100</u>	ZL fS	Medium
		43 100	120	fS	High High
150	Т	0	30	mZCL	Medium
		30	43	mZCL	Medium
		43			High
454	~	100	120 30	fS ZL	High Medium
151	Т	30	48	ZL	Medium
		48	<u>100</u>	ZL	Medium
		100		fS	High
152	Т	0	30	ZL	Medium
		30 48	40 <u>110</u>	ZL	Medium Medium
		110	<u>110</u> 120	fS	High
153	Т	0	40	ZL	Medium
		40			Medium
		110			High
154	Т	0 30	30 45	ZL ZL	Medium Medium
		30 45			High
		110			High
156	Т	0	35	mZCL	Medium
		35	45	mZCL	Medium
		45	50		Low
		50 80			Low Low
157	Т	0			Medium
				I	

					•
		40	45	mZCL	Medium
		45	50	ZC	Low
		50	<u>80</u>	ZC	Low
		80	120	ZC	Low
158	Т	0	35	ZL	Medium
		35	45	ZL	Medium
		45	<u>80</u>	ZL	Medium
		80	120	ZL	Medium
159	Т	0	35	mSZL	High
		35	48	fS	High
		48	80	ZL	Medium
		80	120	ZL	Medium
160		0	35	ZL	Medium
160	Т	35	48	ZL	
					Medium
		48 80	<u>80</u> 120	hZCL C	Low
					Low
161	Т	0	38	ZL	Medium
		38	45	mZCL	Medium
		45	55	ZC	Low
		55	<u>80</u>	fS	High
		80	120	fS	High
162	Т	0	38	ZL	Medium
		38	50	ZL	Medium
		50	<u>90</u>	fS	High
		90	120	fS	High
163	т	0	38	ZL	Medium
105	I	38	40	ZL	Medium
		38 40		ZL	
			58		Medium
		58	<u>90</u> 120	ZC	Low
		90	120	ZC	Low
164	Т	0	38	ZL	Medium
		38	<u>100</u>	fS	High
		100	120	fS	High
165	Т	0	40	ZL	Medium
		40	45	ZL	Medium
		45	78	fS	High
		78	<u>90</u>	С	Low
		90	120	С	Low
166	Т	0	35	ZL	Medium
100	I	35	48	fS	High
		48	<u>80</u>	ZC	Low
		80	120	ZC	Low
407	Ŧ	0	40	mZCL	Medium
167	Т	40	70	ZC	
					Low
		70	<u>90</u>	ZL	Medium
		90	120	ZL	Medium
168	Т	0	35	mZCL	Medium
		35	45	mZCL	Medium
		45	<u>90</u>	ZL	Medium
		-			
		90	120	ZL	Medium
169	Т	90 0	120 20	ZL	Medium Medium
169	т				
169	Т	Ο	20	ZL	Medium
	T	0 20	20 <u>75</u>	ZL ZCL	Medium Medium
169 170		0 20 75	20 <u>75</u> 120	ZL ZCL ZCL	Medium Medium Medium Medium
		0 20 75 0	20 <u>75</u> 120 20 50	ZL ZCL ZCL ZL	Medium Medium Medium Medium Low
		0 20 75 0 20	20 <u>75</u> 120 20	ZL ZCL ZCL ZL ZC	Medium Medium Medium Medium Low Medium
170	т	0 20 75 0 20 50 75	20 <u>75</u> 120 20 50 <u>75</u> 120	ZL ZCL ZCL ZL ZC ZL ZL	Medium Medium Medium Medium Low Medium
		0 20 75 0 20 50 75 0	20 7 <u>5</u> 120 20 50 7 <u>5</u> 120 33	ZL ZCL ZCL ZL ZC ZL ZL ZL	Medium Medium Medium Medium Medium Medium
170	т	0 20 75 0 20 50 75 0 33	20 7 <u>5</u> 120 50 7 <u>5</u> 120 33 50	ZL ZCL ZCL ZC ZL ZL ZL ZC	Medium Medium Medium Low Medium Medium Medium Low
170	т	0 20 75 0 20 50 75 0 33 50	20 75 120 50 75 120 33 50 <u>90</u>	ZL ZCL ZCL ZC ZL ZL ZL ZC ZL	Medium Medium Medium Low Medium Medium Medium Low Medium
170 171	Т	0 20 75 0 20 50 75 0 33 50 75	20 75 120 50 75 120 33 50 <u>90</u> 120	ZL ZCL ZL ZC ZL ZL ZL ZC ZL ZL ZL	Medium Medium Medium Low Medium Medium Low Medium Medium
170	т	0 20 75 0 20 50 75 0 33 50 75 0	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30	ZL ZCL ZCL ZC ZL ZL ZL ZC ZL ZL ZL ZL	Medium Medium Medium Low Medium Medium Low Medium Medium Medium
170 171	Т	0 20 75 0 20 50 75 0 33 50 75 0 30	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30 40	ZL ZCL ZL ZC ZL ZL ZL ZL ZL ZL ZL ZL	Medium Medium Medium Low Medium Medium Low Medium Medium Medium Medium
170 171	Т	0 20 75 0 20 50 75 0 33 50 75 0	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30	ZL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL	Medium Medium Medium Low Medium Medium Medium Medium Medium Medium Medium
170 171	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70	20 75 120 50 75 120 33 50 90 120 30 40 70 85	ZL ZCL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZCL ZC	Medium Medium Medium Low Medium Medium Low Medium Medium Medium Medium
170 171	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40	20 75 120 50 75 120 33 50 <u>90</u> 120 30 40 70	ZL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL	Medium Medium Medium Low Medium Medium Medium Medium Medium Medium Medium
170 171	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70	20 75 120 50 75 120 33 50 90 120 30 40 70 85	ZL ZCL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZCL ZC	Medium Medium Medium Low Medium Medium Medium Medium Medium Medium Medium Low
170 171 172	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70 85	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30 40 70 <u>85</u> 120	ZL ZCL ZC ZC ZL ZL ZL ZL ZL ZL ZL ZL ZL ZCL C C	Medium Medium Medium Low Medium Medium Low Medium Medium Medium Medium Low Low Low
170 171 172	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70 85	20 75 120 20 50 75 120 33 50 90 120 30 40 70 85 120 30	ZL ZCL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZL ZCL C C C	Medium Medium Medium Low Medium Medium Low Medium Medium Medium Low Low Low Low
170 171 172	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70 85 0 30	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30 40 70 <u>85</u> 120 30 48	ZL ZCL ZL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZCL C C C ZL ZL	Medium Medium Medium Low Medium Medium Medium Medium Medium Medium Low Low Low Low
170 171 172 173	T T T	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70 85 0 30 40 70 85 0 0 30 48 90	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30 40 70 <u>85</u> 120 30 48 <u>90</u> 120	ZL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZCL C C C ZL ZL ZL ZL ZL ZL	Medium Medium Medium Medium Low Medium Medium Medium Medium Medium Low Low Low Low Low
170 171 172	Т	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70 85 0 30 40 70 85 0 30 40 70 85 0 0 30 40 70 85 0 0 30 40 70 85 0 0 70 0 70 75 70 75	20 <u>75</u> 120 20 50 <u>75</u> 120 33 50 <u>90</u> 120 30 40 70 <u>85</u> 120 30 40 70 <u>85</u> 120 30 48 <u>90</u> 120	ZL ZCL ZCL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL ZL	Medium Medium Medium Low Medium Medium Medium Medium Medium Low Low Low Low Low Medium Medium Medium Medium Medium Medium
170 171 172 173	T T T	0 20 75 0 20 50 75 0 33 50 75 0 30 40 70 85 0 30 40 70 85 0 0 30 48 90	20 75 120 20 50 75 120 33 50 <u>90</u> 120 30 40 70 <u>85</u> 120 30 48 <u>90</u> 120	ZL ZCL ZC ZL ZL ZL ZL ZL ZL ZL ZL ZCL C C C ZL ZL ZL ZL ZL ZL	Medium Medium Medium Medium Low Medium Medium Medium Medium Medium Low Low Low Low Low

		60 85	<u>85</u> 120	ZC ZC	Low Low
175	Т	0	35	ZL	Medium
		35	68	fS	High
		68	<u>90</u>	С	Low
		90	120	С	Low
176	Т	0	20	ZL	Medium
		20	35	mZCL	Medium
		35	<u>60</u>	С	Low
		60	120	С	Low
178	Т	0	28	ZL	Medium
		28	<u>80</u>	mZCL	Medium
		100	120	mZCL	Medium
181	Т	0	28	ZL	Medium
		28	50	ZL	Medium
		50 80	<u>80</u> 120	ZL	Medium Medium
182		0	38	hZCL	Low
162	Т	38	40	hZCL	Low
		40	50	hZCL	Low
		50	<u>80</u>	fS	High
		80	<u></u> 120	fS	High
183	Т	0	30	hZCL	Low
		30	40	hZCL	Low
		40	<u>70</u>	С	Low
		70	120	С	Low
184	Т	0	38	mSZL	High
_		38	<u>60</u>	С	Low
		60	120	С	Low
185	Т	0	38	mZCL	Medium
		38	<u>40</u>	mZCL	Medium
		40	120	С	Low
186	Т	0	30	ZL	Medium
		30	45	cSL	High
		45	<u>80</u>	С	Low
		80	120	С	Low
187	Т	0	28	mZCL	Medium
		28	45	С	Low
		45	<u>50</u>	mZCL	Medium
		50	120	С	Low
188	Т	0	15	oZCL	Low
		15	60	hCL C	Low
		60 80	<u>80</u> 120	c	Low
192	Ŧ	0	<u>40</u>	SCL	Low Medium
192	Т	40	<u>+0</u> 120	C	Low
193	т	0	38	SCL	Medium
195	I	38	<u>45</u>	SCL	Medium
		45	120	С	Low
194	Т	0	30	mCL	Medium
	-	30	45	mCL	Medium
		45	<u>90</u>	С	Low
		90	120	С	Low
195	Т	0	30	SCL	Medium
		30	50	SCL	Medium
		50	<u>90</u>	SCL	Medium
		90	120	SCL	Medium
196	Т	0	27	LmS	High
		27	60	LmS	High
		60 80	80 120	LmS	High
					High
197	Т	0	27	mSL	High High
		27 50	50	LmS LmS	High High
		50 72	72 90	LmS	High High
		90	90 120	mS	High High
-		50	25	SCL	Medium
100	т	0	20	001	weddin
198	Т	0 25			Medium
198	Т	25	70 120	SCL SCL	Medium Medium
		25 <u>70</u>	70 120	SCL SCL	Medium
198 199	T T	25 <u>70</u> 0	70	SCL	Medium Medium
		25 <u>70</u>	70 120 25	SCL SCL mCL	Medium

200 T 30 32 46 SCL Medium 35 SCL Medium 55 SCL Medium 46 SCL Medium 50 SCL Medium 201 T 0 22 mCL Medium 202 T 0 22 mCL Medium 202 T 0 23 mCL Medium 203 T 0 23 mSL High 204 T 0 44 LmS High 205 T 0 22 mCL Medium 206 T 0 23 SCL Medium 207 T 0 23 SCL Medium 208 T 0 24 SCL Medium 201 T 0 22 mSL High 201 T 0 23 SCL Medium						
40 50. Medium 201 T 0 28 70. Medium 201 T 0 28 70. Medium 202 T 0 28 70. Medium 203 T 0 28 mst. High 203 T 0 28 mst. High 204 T 0 28 mst. High 203 T 0 28 mst. High 204 T 0 28 mst. High 205 T 0 32 SCL Medium 206 T 0 28 SCL Medium 211 T 0 28 SCL Medium 212 T 0 28 SCL Medium 223 SCL Medium SSCL Medium 224 T 28 SSCL Medium	200	Т	0	25	mCL	Medium
40 50. Medium 201 T 0 28 70. Medium 201 T 0 28 70. Medium 202 T 0 28 70. Medium 203 T 0 28 mst. High 203 T 0 28 mst. High 204 T 0 28 mst. High 203 T 0 28 mst. High 204 T 0 28 mst. High 205 T 0 32 SCL Medium 206 T 0 28 SCL Medium 211 T 0 28 SCL Medium 212 T 0 28 SCL Medium 223 SCL Medium SSCL Medium 224 T 28 SSCL Medium			25	45	SCL	Medium
Image: section of the sectio						
201 T 0 22 mCL Medium 40 120 C tow 202 T 22 44 120 C tow 203 T 22 44 120 C tow 203 T 23 47 123 High 204 T 0 22 mSL High 204 T 0 23 mSL High 205 T 0 22 mSL High 206 T 0 23 SCL Medium 207 T 0 22 SCL Medium 211 T 0 24 mSL High 212 T 0 17 mSL High 213 T 0 27 mSL High 213 T 0 23 MSL High 214 T 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1 1 2 4 4 1			55	120	C/CL	Low
111	201	Т	0	25	mCL	Medium
100010		-	25	40	mCl	
202T C<						
1124111			40	120	C	Low
111	202	Т	0	25	mCL	Medium
Image: state s			25	45	hCl	
203T						
And (1)And (4)And (4)And (1)High <b< td=""><td></td><td></td><td>45</td><td>120</td><td>С</td><td>Low</td></b<>			45	120	С	Low
111	203	т	0	25	mSL	Hiah
Image: bit of the sector of	200	·				
204 PitT4.6 4.64.16 4.12High High High High High 205High THigh High High 206High 206High 207High 207208 208302 208302 208SCL 208Medium Medium 208SCL 208Medium Medium 208SCL 208Medium Medium 208 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
PHImage with the sector of the se			<u>47</u>	120	LmS	High
PitImageHigh205T28mCLMcGium206T28CLow206T32SCLMcdium207T32SCLMcdium207T2836SCLMcdium207T2836SCLMcdium210A2836LMcdium211T2836LMcdium211T2836LHigh212T36LMcdiumHigh213T3636LHigh214T36L16LHigh215T3636LHigh214T3636LKelum32536L36L16LHigh32636L36L16L16L32736L36L16L16L328T36L36L16L329T3636L16L329T3636L16L329T3636L16L329T3636L16L329T3636L16L329T3636L16L329T3636L16L329T3636L16L329T3636L16L329T3636L36L329T3636L36L329	204	т	0	40	LmS	Hiah
MMMedium265T28MCLow206T28SCLMedium207T022SCLMedium207T028SCLMedium207T028SCLMedium207T028SCLMedium208SCLMedium35Medium209T028SCLMedium210T028SCLMedium211T028SCLMedium212T017MSLHigh213T027MSLHigh213T027MSLHigh214T030SCLMedium215T028MCLLow216T028MCLLow217T028MCLLow218T030SCLMedium219T028MCLLow229T028MCLLow229T028MCLLow250T030SCLMedium251T029MCLLow251T028MCLLow252T0SCLMedium253T0CLow254T		·				
1 28 65 120 C Low 206 T 65 120 C Low 207 T 0 32 SCL Medium 207 T 0 28 SCL Medium 207 T 0 28 SCL Medium 211 T 0 128 MSL High 212 T 0 17 MSL High 213 T 0 17 MSL High 214 T 0 27 MSL High 213 T 0 32 mSL High 214 T 0 32 mSL Medium 214 T	Pit		40			
Construct	205	Т	0	28	mCL	Medium
Construct			28	65	С	Low
206 T 32 SCL Medium 207 T 0 28 SCL Medium 207 T 0 28 SCL Medium 207 T 0 28 SCL Medium 210 T 0 28 SCL Medium 211 T 0 128 MSL High 211 T 0 17 MSL High 212 T 0 17 MSL High 213 T 0 17 MSL High 214 T 0 30 SCL Medium 215 T 0 30 SCL Medium 216 T 0						
207T3232.Medium207T028SCLMedium2848SCLMedium211T028MSLHigh211T028MSLHigh212T0171MSLHigh213T00.72MSLHigh214T027MSLHigh213T027MSLHigh214T038SCLMedium215T0SCLMedium216MSLHigh128MSLHigh217T0SCLMedium218MSLMedium55SCLMedium219T0SCLMedium215T0SSLMedium229T0SSLMedium220T0SSLMedium230T0SSLMedium240T0SSLMedium250T0SSLMedium251T0SSLMedium251T0SSLMedium251T0SSLMedium251T0SSLMedium251T0SSLMedium251T0SSLMedium251T0SSLMedium355120 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
207 T 0 28 SCL Medium 28 66 SCL Medium 211 T 0 28 45 mSL High 211 T 0 17 mSL High 212 T 0 17 mSL High 213 T 0 17 mSL High 213 T 0 27 mSL High 213 T 0 27 mSL High 214 T 0 28 mSL Medium 50 100 LmS High High 214 T 0 30 SCL Medium 50 120 SCL Medium SCL Medium 215 T 0 28 mSL High 216 T 0 SCL Medium 217 S SCL Medium	206	Т	0	32	SCL	Medium
207 T 8 28 SCL Medium 28 66 SCL Medium 211 T 0 28 mSL High 211 T 0 28 mSL High 212 T 0 17 mSL High 212 T 0 17 mSL High 213 T 0 27 mSL High 213 T 0 27 mSL High 214 T 0 30 SCL Medium 215 T 0 30 SCL Medium 216 T 0 30 SCL Medium 214 T 0 30 SCL Medium 215 T 0 28 MCL Low 23 T 0 30 SCL Medium 240 T 0 28 <			32	120	SCL	Medium
28 36 SCL Medium 211 T 0 28 mSL High 211 T 0 17 mSL High 212 T 0 17 mSL High 212 T 0 17 mSL High 213 T 0 27 mSL High 213 T 0 27 mSL High 213 T 0 27 mSL High 214 T 0 23 mSL Medium 214 T 0 33 SSL Medium 215 T 0 23 MCL Medium 216 T 0 33 SSL Medium 221 T 0 33 SSL Medium 223 T 0 33 SSL Medium 2240 T 0 33					0.01	
Image: state	207	Т				
Image: state			28	86	SCL	Medium
211 T 3 3 3 100 100 211 T 28 48 mSL High 212 T 0 17 mSL High 212 T 0 17 mSL High 213 T 0 27 mSL High 213 T 0 27 mSL High 214 T 0 27 mSL High 215 T 0 22 mSL High 214 T 0 30 SCL Medium 215 T 0 28 MCL Medium 216 T 0 30 SCL Medium 221 T 0 30 SCL Medium 223 T 0 30 SCL Medium 230 T 0 30 SCL Low 231 C			86	120	SCL	
A.T. A.g. A.g. M.g.L. High 212 T 0 17 M.S.L. High 212 T 0 17 M.S.L. High 212 T 0 17 M.S.L. High 213 T 0 27 M.S.L. High 213 T 0 27 M.S.L. High 213 T 0 27 M.S.L. High 214 T 0 30 SCL. Medium 0 28 M.G. Medium Medium 214 T 0 30 SZL. Medium 215 T 0 28 M.C. Low 216 T 0 30 SZL. High 221 T 0 32 C.C. Low 238 T 0 32 M.C.L. Low 239 T 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
120 msL High High High 212 T 0 17 msL High 213 T 0 27 msL High 214 T 0 30 SCL Medium 214 T 0 30 SCL Medium 215 T 0 28 mcL Medium 215 T 0 33 SZL High 238 T 0 33 SZL Medium 239 T 0 28 mcL Medium 240 T 28 mcL Medium 250 T 0 28 mcL Medium 251 T 0 33 mcL M	211	Т	0	28	mSL	High
100 45 120 msL High High High 212 T 0 17 msL High 213 T 0 27 msL High 213 T 0 27 msL High 213 T 0 27 msL High 214 T 0 30 SCL Medium 214 T 0 30 SCL Medium 214 T 0 30 SCL Medium 215 T 0 30 SCL Medium 221 T 0 32 Medium Medium 2238 T 0 33 SZL High 239 T 0 28 mCL Medium 2239 T 0 28 mCL Medium 240 T 0 27 Medium Medium Medium Medium Me			28	45	mSL	High
212 T 0 17 mSL High High Migh 213 T 0 27 mSL High Migh 213 T 0 27 mSL High Migh 213 T 0 27 mSL High 214 T 0 30 SCL Medium 214 T 0 30 SCL Medium 214 T 0 30 SCL Medium 216 T 0 30 SCL Medium 216 T 0 30 SCL Medium 216 T 0 30 SCL High 216 T 0 30 SCL Medium 216 T 0 30 SCL High 216 T 0 30 SCL Holin 216 T 0 30 SCL Holin 229						
1 1 27 mSL mSL mSL High High 213 T 0 27 mSL mSL High High 213 T 0 27 mSL mSL High High 213 T 0 27 mSL mSL High High 214 T 0 30 SCL Medium Medium 214 T 0 30 SCL Medium Medium 215 T 0 28 mCL Medium Medium 238 T 0 30 SZL Medium High 239 T 0 26 mCL Medium Low 240 T 0 27 McL Medium Low 241 T 0 30 McL Medium Low <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
117 27 msL msL msL msL msL msL msL msL msL msL	212	Т	0	17	mSL	High
Image: sector			17	27	mSL	
213 T 2 mSL High mSL High High High 214 T 27 51 mSL High High 214 T 0 30 SCL Medium Medium 215 T 0 28 mCL Medium Medium 216 T 0 28 mCL Medium Medium 215 T 0 28 mCL Medium Medium 216 T 0 30 SCL Medium Medium 216 T 0 28 mCL Low 218 T 0 30 SZL High 216 T 0 30 SZL High 217 T 0 30 SZL High 218 T 0 30 SZL High 210 T 0 30 MCL Low 229 T 0 28 mCL Medium						
And Big 						
Image: state s	213	Т	0	27	mSL	High
Set base in the set of the s			27	51	mSI	-
214T60120LmsHigh214T30SCLMedium3050SCLMedium3050SCLMedium215T028McLLow215T028McLLow238T030SZLHigh239T026McLLow239T026McLLow239T028McLLow239T028McLMedium240T029MCLMedium240T029MCLMedium241T027SIscL242T3060SCLMedium241T3060SCLMedium242T3060SCLMedium250T3060SCLMedium251T031SCLLow257T029GCLow257T033SCLMedium258T033SCLMedium675120McLHigh258T033SCLMedium675120McLHigh75T033SCLMedium675120McLHigh75 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
214 T 0 30 SCL Medium 30 50 SCL Medium 215 T 0 28 MCL Medium 215 T 0 28 MCL Medium 216 T 0 28 MCL Low 238 T 0 30 SZL High 30 50 120 C Low 238 T 0 30 SZL High 30 20 120 MCL Low 239 T 0 28 MCL Low 240 T 0 28 MCL Low 240 T 0 29 MCL Medium 250 T 0 29 MCL Low 241 T 0 30 MCL Medium 250 T 0 30 MCL Low						
214 T 0 30 SCL Medium 30 50 SCL Medium 215 T 0 28 mCL Medium 215 T 0 28 mCL Medium 216 T 0 28 mCL Low 238 T 0 30 SZL High 239 T 0 28 mCL Low 239 T 0 26 mCL Low 239 T 0 28 mCL Low 240 T 0 28 mCL Low 240 T 0 28 mCL Medium 25 70 C Low Low Low 240 T 0 27 MCL Medium 25 T 0 27 MCL Low 241 T 0 27 MCL<			<u>60</u>	120	LmS	High
L. I. 30 50 SCL Medium 215 T 0 28 mCL Medium 215 T 0 28 mCL Low 238 T 0 30 SZL Low 238 T 0 30 SZL High 239 T 0 30 SZL Low 239 T 0 26 mCL Low 240 T 0 28 mCL Low 240 T 0 27 mCL Medium 250 T 0 30 mCL Low 241 T 0 30 mCL Medium 250 T 0 30	214	т	0	30	SCI	
215T50120SCLMedium215T028mCLLow2846hCLLow46120CLow238T030SZLHigh100100100239T020120hCLLowLow239T026mCLLowLow240T028mCLLowLow240T027120hCLLow241T027mCLMedium242T030mCLMedium250T030SCLMedium251T030SCLMedium251T033mCLLow257T033mCLLow257T033SCLMedium257T033SCLMedium257T33SCLMedium258T33SCLMedium258T33SCLMedium6575mSLHighHigh258T33SCLMedium6575mSLHighHigh259T033SCLMedium6575mSLHighHigh259T2545McLMedium6575mSL <td>214</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	214	1				
215 T 0 28 mCL Medium 28 46 hCL Low 238 T 0 30 SZL High 239 T 0 26 mCL Low 239 T 0 26 mCL Low 239 T 0 26 mCL Low 240 T 0 28 mCL Medium 240 T 0 28 mCL Low 240 T 0 28 mCL Medium 29 70 C Low Low 240 T 0 28 mCL Medium 29 70 C Low Low Low 240 T 0 30 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Me						
Normal 28 46 hCL Low 238 T 0 30 SZL High 238 T 0 30 SZL Low 239 T 0 26 mCL Low 239 T 0 26 mCL Medium 240 T 0 25 mCL Medium 240 T 0 25 mCL Medium 240 T 0 27 mCL Medium 241 T 0 27 mCL Medium 241 T 0 27 mCL Medium 242 T 0 30 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 251 T 0 31 McL Low 251 T 0			50	120	SCL	Medium
Normal 28 46 hCL Low 238 T 0 30 SZL High 238 T 0 30 SZL Low 239 T 0 26 mCL Low 239 T 0 26 mCL Medium 240 T 0 25 mCL Medium 240 T 0 25 mCL Medium 240 T 0 27 mCL Medium 241 T 0 27 mCL Medium 241 T 0 27 mCL Medium 242 T 0 30 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 251 T 0 31 McL Low 251 T 0	215	т	0	28	mCL	Medium
238 T 0 30 SZL High Low 238 T 0 30 70 hCL Low 239 T 0 26 mCL Medium 239 T 0 26 mCL Medium 240 T 0 29 mCL Low 240 T 0 29 mCL Medium 240 T 0 29 mCL Low 240 T 0 29 mCL Medium 250 T 0 27 mCL Medium 251 T 0 30 mCL Medium 250 T 0 30 SCL Medium 251 T 0 30 SCL Medium 251 T 0 31 SCL Medium 251 T 0 31 SCL Medium 251	215	I				
238 T 0 30 SZL High 238 T 0 30 70 HcL Low 20 120 HcL Low Low Low 239 T 0 26 mCL Medium 239 T 0 26 mCL Low 240 T 0 29 mCL Low 240 T 0 29 mCL Low 240 T 0 29 mCL Medium 240 T 0 27 mCL Medium 240 T 0 27 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 30 66 SCL Medium SCL Medium 250 T 0 31 SCL Medium 30			28	46		Low
238 T 0 30 SZL High Low 30 70 hCL Low 239 T 0 26 mCL Medium 26 70 C Low Low 240 T 0 29 mCL Medium 240 T 0 29 mCL Medium 240 T 0 27 mCL Medium 240 T 0 27 mCL Medium 250 T 0 27 mCL Medium 30 60 fiSCL Medium Low Low 250 T 0 30 mCL Medium 30 58 SCL Medium Low Low 250 T 0 30 SCL Medium 30 58 SCL Medium Low Low 251 T 0 29			46	120	С	Low
Loc Indition Indition Indition Indition 239 T 0 26 mCL Medium 239 T 0 26 mCL Low 239 T 0 26 mCL Low 240 T 0 29 mCL Low 240 T 0 29 mCL Low 240 T 0 29 mCL Low 240 T 0 27 Medium Low 241 T 0 27 Medium Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 250 T 0 30 SCL Medium 251 T 0 31 McL Low 251 T 0 31 SCL Medium 25 120	220	Ŧ	0	30	<u>87</u> 1	
Z0 120 hCL Low 239 T 0 26 mCL Medium 239 T 0 26 mCL Low 240 T 0 29 mCL Medium 240 T 0 29 mCL Medium 240 T 0 29 mCL Medium 240 T 0 27 mCL Medium 240 T 0 27 mCL Medium 241 T 0 27 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 250 T 0 30 SCL Medium 250 T 0 31 mCL Low 251 T 0 31 SCL Medium 251 T 0 33	230	I				
239 T 0 26 mCL Medium 26 70 C Low 70 120 hCL Low 240 T 0 28 mCL Medium 240 T 0 29 mCL Low 240 T 0 29 mCL Low 240 T 0 27 mCL Medium 240 T 0 27 mCL Low 241 T 0 27 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 250 T 0 30 SCL Medium 251 T 0 31 SCL Medium 251 T 0 31 SCL Medium						Low
And And And C Low 240 T 0 29 MCL Medium 240 T 0 29 MCL Medium 240 T 0 29 MCL Medium 240 T 0 27 MCL Low 241 T 0 27 MCL Medium 241 T 0 30 MCL Medium 241 T 0 30 MCL Medium 241 T 0 30 MCL Medium 242 T 0 30 MCL Medium 250 T 0 30 SCL Medium 250 T 0 31 MCL Low 250 T 0 33 SCL Medium 251 T 0 33 MCL Low 257 T 0			<u>70</u>	120	hCL	Low
And And And C Low 240 T 0 29 MCL Medium 240 T 0 29 MCL Medium 240 T 0 29 MCL Medium 240 T 0 27 MCL Low 241 T 0 27 MCL Medium 241 T 0 30 MCL Medium 241 T 0 30 MCL Medium 241 T 0 30 MCL Medium 242 T 0 30 MCL Medium 250 T 0 30 SCL Medium 250 T 0 31 MCL Low 250 T 0 33 SCL Medium 251 T 0 33 MCL Low 257 T 0	220	Ŧ	0	26	mCl	Medium
240T0120hCLLow240T029mCLMedium241T027mCLMedium241T027mCLMedium241T030mCLMedium242T030mCLMedium242T030fSCLMedium250T030SCLMedium250T030SCLMedium251T031mCLLow251T031McLLow257T029SCLMedium257T029SCLHigh258T033SCLHigh258T033SCLHigh259T033SCLHigh259T033SCLHigh259T035SCLHigh259T025mSLHigh259T025mSLHigh259T025mSLHigh259T025mSLHigh259T025mSLHigh259T025mSLHigh259T025mSLHigh259T025mSLHigh259 <td< td=""><td>239</td><td>I</td><td></td><td></td><td></td><td></td></td<>	239	I				
240 T 0 29 mCL Medium 29 70 C Low 29 70 C Low 70 120 C Low 241 T 0 27 mCL Medium 27 55 15CL Medium 27 55 15CL Medium 241 T 0 30 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 SCL Medium 250 T 0 31 SCL Medium 250 T 0 31 SCL Medium 250 T 0 31 SCL Medium 251 T 0 31 SCL Low 251 T 0 29 SCL Medium 257 T 0 29 SCL			26	70	С	Low
240 T 0 29 mCL Medium 29 70 C Low 241 T 0 27 mCL Medium 241 T 0 27 mCL Medium 241 T 0 27 mCL Medium 250 T 0 30 mCL Medium 250 T 0 30 mCL Low 250 T 0 30 SCL Medium 30 660 fSCL Medium Low 250 T 0 30 SCL Medium 30 58 SCL Medium Low Low 251 T 0 31 mCL Low 251 T 0 29 Keilum Low 257 T 0 29 SCL Medium 120 C/CL Low Low <td< td=""><td></td><td></td><td>70</td><td>120</td><td>hCL</td><td>Low</td></td<>			70	120	hCL	Low
2970C C Low Low241T027McL Medium241T027fiscL Medium241T030fiscL Medium250T030mCL 	242	_	0	20		
241T0120CLow241T027mCLMedium242T030mCLMedium242T030mCLMedium242T030mCLMedium242T030MCLMedium242T030GCMedium242T030GCMedium242T030GCMedium3060fSCLMediumMedium250T030SCLMedium251T031mCLLow251T031MCLLow257T029SCLMedium257T029SCLHigh257T033SCLHedium6075mSLHighHigh258T033SCLMedium6575mSLHighHigh259T025mCLMedium259T025MCLMedium259T025MCLMedium	240	Т				
241 T 0 27 mCL Medium 27 55 fSCL Medium 260 55 120 C Low 242 T 0 30 mCL Medium 242 T 0 30 mCL Medium 242 T 0 30 mCL Medium 240 T 0 30 mCL Medium 250 T 0 30 SCL Medium 250 T 0 30 SCL Medium 250 T 0 31 mCL Low 251 T 0 31 mCL Low 251 T 0 29 SCL Low 257 T 0 29 SCL Medium 257 T 0 33 SCL Medium 257 T 0 33 SCL			29	70	С	Low
241 T 0 27 mCL Medium 27 55 fSCL Medium 261 27 55 fSCL Medium 261 27 55 fSCL Medium 261 7 0 30 mCL Medium 242 T 0 30 mCL Medium 242 T 0 30 mCL Medium 240 T 0 30 mSCL Medium 250 T 0 30 SSCL Medium 250 T 0 31 mCL Low 251 T 0 31 mCL Low 251 T 0 29 SCL Low 257 T 0 29 SCL Medium 257 T 0 33 SCL Medium 257 T 0 33 SCL			70	120	С	Low
And 27 55 fSCL Medium 242 T 0 30 mCL Medium 242 T 0 30 mCL Medium 242 T 0 30 mCL Medium 100 120 C/CL Medium Low 250 T 0 30 SCL Medium 251 T 0 31 mCL Low 251 T 0 31 mCL Low 257 T 0 29 SCL Medium 120 C/CL Low High High 121 T 0 29 SCL Medium 125 120 mSL High					mCl	
242T030mCLLow242T030mCLMedium3060fSCLMedium60120C/CLLow250T030SCLMedium3058SCLMedium250T030SCLMedium250T030SCLMedium250T031mCLLow251T031mCLLow251T031MediumLow257T029SCLMedium6075mSLHighHigh75120LmSHighHigh258T033SCLMedium6575mSLHighHigh258T035SCLMedium6575mSLHighHigh259T025McLMedium6545McLMedium6575MCLMedium75120MSLHigh75120MCLMedium75120MCLMedium75120MSLHigh75120MCLMedium75120MSLHigh75120MCLMedium75120MCLMedium75120MSLHigh7	241	Т				
242T030mCLLow242T030mCLMedium3060fSCLMedium60120C/CLLow250T030SCLMedium3058SCLMedium250T030SCLMedium250T030SCLMedium250T031mCLLow251T031mCLLow251T031MediumLow257T029SCLMedium6075mSLHighHigh75120LmSHighHigh258T033SCLMedium6575mSLHighHigh258T035SCLMedium6575mSLHighHigh259T025McLMedium6545McLMedium6575MCLMedium75120MSLHigh75120MCLMedium75120MCLMedium75120MSLHigh75120MCLMedium75120MSLHigh75120MCLMedium75120MCLMedium75120MSLHigh7			27	55	fSCL	Medium
242 T 0 30 mCL Medium 30 60 fSCL Medium Low 30 60 fSCL Medium Low 250 T 0 30 SCL Medium 250 T 0 30 SCL Medium 30 58 SCL Medium Medium 250 T 0 30 SC Medium 251 T 0 31 MCL Low 251 T 0 31 MCL Low 251 T 0 31 MCL Low 257 T 0 29 SCL Medium 257 T 0 29 SCL Medium 257 T 0 29 McL High 258 T 0 33 SCL Medium 258 T 0 33 SCL			55	120	С	
3060fSCL C/CLMedium Low250T030SCLMedium3058SCLMediumMedium3058SCLLowLow251T031mCLLow251T031McLLow251T031fbCLLow257T029SCLMedium257T029SCLHigh6075mSLHighHigh75120C/CLLmSHigh258T033SCLMedium16575mSLHighHigh258T033SCLMedium175120mSLHighHigh259T025mCLMedium259T025mCLMedium259T2545mCLMedium						
LowLow250T030SCLMedium3058SCLMedium3058SCLMedium3058120CLow251T031mCLMedium3155120C/CLLow257T029SCLMedium257T029SCLHigh257T029Medium10075120Medium111155120Medium112120120Medium1136075mSLHigh11413365SCLMedium115120120133SCL115120120134High125120120mSLHigh12575120mSLHigh1259T025mCLMedium12545mCLMedium	242	Т				
LowLow250T030SCLMedium3058SCLMedium3058120CLow251T031mCLMedium251T031MCLLow257T029SCLMedium257T029SCLHigh257T029Medium100120MediumHigh110155120Medium111155120Medium111155120Medium111155120Medium111155120Medium111155120Medium111155120Medium111155120Medium111155120Medium111155120Medium111155120mSL111155120mSL111155120mSL111155120mSL111155120mSL111155120mSL111155120mSL111155120mSL112155120mSL113155120mSL114155120mSL115155120mSL116155155150115155			30	60	fSCL	Medium
250 T 0 30 SCL Medium 30 58 SCL Medium 30 58 SCL Medium 58 120 C Low 251 T 0 31 mCL Medium 251 T 0 31 mCL Medium 251 T 0 31 mCL Medium 251 T 0 31 mCL Low 257 T 0 29 SCL Medium 257 T 0 29 SCL Medium 120 C/CL Low 100 mSL High 121 LmS Medium 110 mSL High 258 T 0 33 SCL Medium 133 65 SCL Medium 110 110 110 141 133 65 SCL Medium 110			60	120	C/CL	Low
No. No. Medium 100 58 SCL Medium 100 58 120 C Low 251 T 0 31 mCL Medium 101 31 55 hCL Low 251 T 0 31 mCL Medium 101 55 120 C/CL Low 257 T 0 29 SCL Medium 257 T 0 29 SCL High 101 129 60 mSL High 111 160 75 mSL High 111 175 120 LmS High 111 133 65 SCL Medium 113 133 65 SCL Medium 114 133 65 SCL Medium 115 120 mSL High High 115 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Image: section of the section of th	250	Т				
251T031mCLMedium251T03155hCLLow055120C/CLLowLow257T029SCLMedium1002960mSLHigh10175120LmSHigh10275120LmSHigh258T033SCLMedium10113365SCLMedium10213365SCLHigh10375120mSLHigh114155120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLHigh115120mSLMedium115120mSLMedium115120mSLMedium115125145mCLMedium			30	58	SCL	Medium
251 T 0 31 mCL Medium 31 55 hCL Low 257 T 0 29 C/CL Low 257 T 0 29 SCL Medium 257 T 0 29 SCL Medium 100 75 100 mSL High 101 155 120 LmS High 102 75 120 LmS High 103 60 75 mSL High 104 133 65 SCL Medium 105 120 LmS High 105 75 mSL High 105 75 mSL High 105 75 mSL High 105 120 mSL High 105 120 mSL High 105 120 mSL Medium 105			58	120	С	Low
Image: section of the section of th	051	_				
257T029SCLMedium257T029SCLHigh2960mSLHigh6075mSLHigh75120LmSHigh258T033SCLMedium6575mSLHigh6575mSLHigh75120mSLHigh75120mSLHigh75120mSLHigh75120mSLHigh75120mSLHigh75120mSLHigh75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120mSLMedium75120120mSL75120120mSL75120120mSL7	251	Т				
257T029SCLMedium257T029SCLHigh2960mSLHighHigh296075mSLHigh2075120LmSHigh258T033SCLMedium258T035SCLMedium259T025mSLHigh259T025mCLMedium			31	55	hCL	Low
257 T 0 29 SCL Medium 29 60 mSL High 29 60 mSL High 60 75 mSL High 100 120 LmS High 258 T 0 33 SCL Medium 100 133 SCL Medium 110 133 65 SCL Medium 111 133 65 SCL Medium 111 15 120 mSL High 111 15 120 mSL Medium 111 125 120 mSL Medium			55	120	C/CL	
And the second						
And the sectorAnd the sectorAnd the sector258T033SCLMedium258T033SCLMedium13365SCLMediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135135Medium135135135135Medium	257	Т	0			
And the sectorAnd the sectorAnd the sector258T033SCLMedium258T033SCLMedium13365SCLMediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135MediumMedium135135135135Medium135135135135Medium			29	60	mSL	High
Image: system state state system state s						
258 T 0 33 SCL Medium 33 65 SCL Medium 65 75 mSL High 259 T 0 25 mCL Medium 259 T 0 25 mCL Medium						
And And And Medium 33 65 SCL Medium 65 75 mSL High 75 120 mSL High 259 T 0 25 mCL Medium 25 45 mCL Medium			<u>75</u>	120	LmS	High
And And And Medium 33 65 SCL Medium 65 75 mSL High 75 120 mSL High 259 T 0 25 mCL Medium 25 45 mCL Medium	258	т	0	33	SCL	Medium
65 75 mSL High 75 120 mSL High 259 T 0 25 mCL Medium 25 45 mCL Medium	200	'				
75 120 mSL High 259 T 0 25 mCL Medium 25 45 mCL Medium						
Z5 120 mSL High 259 T 0 25 mCL Medium 25 45 mCL Medium			65	75	mSL	High
259 T 0 25 mCL Medium 25 45 mCL Medium			<u>7</u> 5	120	mSL	-
25 45 mCL Medium						
	259	Т	0	25		Wedium
			25	45	mCL	Medium
65 120 C Low			65	120	C	LOW
260 T 0 28 mCL Medium	260	т	0	28	mCL	Medium

		. -	-		
		28	40	hCL	Low
		40 54	54	hCL	Low
		54 75	75 120	fSCL C	Medium Low
261	Ŧ	0	27	mCL	Medium
201	Т	27	50	SCL	Medium
		50	70	mCL	Medium
		70	90	LmS	High
		90	120	LmS	High
262	Т	0	26	mCL	Medium
		26	45	SCL	Medium
		45	70	SC	Low
		70	120	hCL	Low
263	Т	0	28	mCL	Medium
		28	60	mCL	Medium
		60	92	hCL	Low
		92	120	С	Low
264	Т	0	26	mCL	Medium
		26	55	hCL	Low
		55	80	С	Low
		80	100	SCL	Medium
		<u>100</u>	120	SCL	Medium
265	Т	0	27	mCL	Medium
		27 40	40 50	hCL C	Low
		40 50	50 70	hCL	Low
		70	120	C	Low Low
266	Т	0	30	mCL	Medium
200	I	30	48	mCL	Medium
		48	120	C/CL	Low
267	Т	0	28	SCL	Medium
201	'	28	52	LmS	High
		52	70	LmS	High
		<u>70</u>	120	Sandstone	N/A
268	Т	0	27	hCL	Low
		27	40	hCL	Low
		40	120	С	Low
269	Т	0	28	mCL	Medium
		28	45	hCL	Low
		45	55	С	Low
		55	120	С	Low
270	Т	0	30	mCL	Medium
		30	<u>40</u>	mCL	Medium
		40	120	С	Low
271	Т	0	30	mCL	Medium
		30	40	mCL	Medium
		40	45	mCL	Medium
		45	<u>60</u> 130	С	Low
0-0		60	120	C	Low
272	Т	0	40 45	SCL	Medium
		40 45	45 55	SCL C	Medium
		45 55	55 <u>100</u>	С	Low
		100	<u>100</u> 120	С	Low Low
273	Т	0	35	mCL	Medium
213	I	35	<u>40</u>	mCL	Medium
		40	<u>+0</u> 120	C	Low
274	Т	0	35	SCL	Medium
-17	ŕ	35	40	SCL	Medium
		40	50	SCL	Medium
		50	70	SCL	Medium
		70	120	С	Low
276	Т	0	30	mCL	Medium
		30	45	mCL	Medium
		45	75	hCL	Low
		75	85	С	Low
		85	120	С	Low
277	Т	0	35	mCL	Medium
		35	48	hCL	Low
		48	<u>90</u>	С	Low
		90	120	С	Low
278	Т	0	30	mCL	Medium Medium

		35	55	hCL	Low
		55	70		Low
		70	<u>90</u>	С	Low
		90	120	С	Low
279	Т	0	35	mCL	Medium
		35	55	mCL	Medium
		55	<u>80</u>	С	Low
		80	120	С	Low
280	Т	0	40	SCL	Medium
		40	<u>50</u>	С	Low
		50	120	С	Low
281	Т	0	38	mCL	Medium
		38	40	hCL	Low
		40	55		Low
		55	<u>70</u>		Low
		70	120		Low
282	Т	0	<u>30</u>		Medium
		30	40		Medium
		40	120		Low
283	Т	0	30		Medium
		30	<u>40</u>		Medium
		40	120		Low
284	Т	0	35	mCL	Medium
		35	60	hCL	Low
		60 80	<u>80</u> 120	с с	Low
					Low
285	Т	0	35	mCL	Medium
		35 55	55		Low
		70	<u>70</u> 120		Low Low
200		0	35		Medium
286	т	35	45	mCL	Medium
		45	55		Low
		55	<u>100</u>		Low
		100	120		Low
287	Т	0	35	mSL	High
201		35	75	mSL	High
		55	<u>95</u>	LmS	High
		95	120		High
288	Т	0	35	mCL	Medium
		35	45	mCL	Medium
		45	50	SCL	Medium
		50	<u>60</u>	С	Low
		60	120	С	Low
289	Т	0	39	SCL	Medium
		39	<u>40</u>		Medium
		40	120		Low
290	Т	0	35	mCL	Medium
		35	<u>70</u>		Low
		70	120		Low
291	Т	0	38		Medium
		38	40	hCL	Low
		40	<u>80</u>		Low
		80	120		Low
292	Т	0	<u>40</u>		Medium
		40	120	С	Low
293	Т	0	39	SCL	Medium
		39	<u>40</u>		Low
		40	120		Low
294	Т	0	40		Medium
		40	<u>45</u> 120	SCL C	Medium
		45	120	0	Low